

P0n?

RECORDS

OF THE

SURVEY OF INDIA

Volume IX
anNual reports OF Parties and OFFICES

1914-15

From 1st October 1914
To 30th September 1915

PREPARED UNDER THE DIRECTION OF
Colonel Sir S. G. BURRARD, K.C.S.I., R.E., F.R.S.
Surveyor General of India

CONTENTS.

PART I.-TOPOGRAPHICAL SURVEY.

REPORTS FROM THE NORTHERN CIRCLE.

REPORTS FBOM THE NORTHERN CIRCLE.							I
Sumeary	1
No. 1 Party 0	...	1
No. 2 Pabty	\cdots	3
No. 3 Pabty	-..	...	\ldots	-	4
No. 4) Pabty ...	\cdots	..	\cdots	...	\ldots	.."	5
No. 20 Party (Cantonment)*	*'	6
The Rivfrain detachurnt	...	\ldots	...	\ldots	...	\cdots	8
The Simla Sobvit detachmbnt	\cdots	12

REPORTS FROM THE SOUTHERN CIRCLE.

PARI II.-GEODETIC AND SCIENTIEIC OPERATIONS.

PAR'I III.—SPECIAL REPORTS.

ILLUSTRATIONS.

INDEX MAPS.

(at the end of Volume).

1. MODERN SURVEYS, AND PUBLICATION, NORTHERN CIRCLE.

8.	$"$	$"$	$"$	$"$	SOUTHERN	$"$
3.	$"$	$"$	$"$	$"$	EASTERN	$"$

b. " " " " SOUTHERN "
6. " " " " EASTERN "
7. .. " PROVISIONAL EDITION OF ONE-INCH SERIES, NORTHERN CIRCLE
8. " $\quad " \quad " \quad \geqslant \quad$ EASTERN $\quad "$
4. " \quad. MODERN HALF-INCH SERIES FOR INDIA.
10. $\because \quad . \quad$ QUARTER-INCH
11. " 'INDIA AND ADJAC'ENT COUNTRIES' SERIES, SCALE $\frac{1}{1,000,000}$.
12. " " INDIAN SHEETS OF "LA CARTE INTERNATIONALE DU MONDE," SCALE $\frac{1}{1,000,000}$.
13. " $"$ 'SOUTHERN ASIA' SERTES, SCALE $\frac{1}{2,000,000}$.
14. PROGRESS OF THE GREAT TRIGONOMETRICAL SURVEY.
15. TRIANGULATION CHARTS OF INDIA.
16. MACNETIC SUREEY OF INDIA.

APPENDIX.

LIST OF gURYEY OF INDIA PUBLICATIONS i-is

RECORDS OF
 THE SURVEY OF INDIA.
 PART I.-TOPOGRAPHICAL SURVEY. NORTHERN CIRCLE.

(Vide Index Maps 1 and 4.)
Summary.-Four field parties worked in this Circle, and during the past field season a total area of 12,334 square miles was surveyed, consisting of :-

Square miles.								

The Riverain Detachment carried out a total of 1,299 linear miles of traversing over an area of 268 square miles for the Riverain work, $\mathbf{3 , 4 6 4}$ linear miles of traversing over 494 square miles for the Kāngra survey and 1,106 linear miles over 53 square miles for the Simla Settlement survey.

No. 20 Party surveyed an area of 19,578 acres in five selected cantonments during the year.

The Simla Survey Detachment continued the large scale survey of Simla during the year.

Colonel W. J. Bythell, R.E., was in charge of the Circle throughout the Survey year.

No. 1 PARTY.
Br Major E. A. Tandy, R.E.

1. The winter programme of field work was cancelled and the office with the bulk of the party therefore remained in Mussoorie throughout the year. This enabled the arrears of fair mapping to be almost cleared off, while a programme of $\frac{1}{2}$-inch mapping has been commenced to make up for the reduction in field work.
2. Field worls was confined to the main. tcnance of a single detachment working in the Himälayan areas of Kashmir and Jammu to the west and north of Kisht. war, with extension of triangulation to the soutb.
3. The summer detachment of 1914 consisting of Mr. Kenny with an average of 8 surveyors continued its work up to the cad of December, when the following 1-inch sheets were completed:$43_{\overline{11,12}, 16,16}^{k}, 43 \frac{0}{9,8}$ and $52 \frac{\mathrm{D}}{\left.\frac{\mathrm{D}}{1(\mathrm{para})}\right)}$.

This detachment also revised some faulty work in the neighbouring sheets $43 \frac{\mathrm{~L}}{1, \mathrm{~L}, \mathrm{D}}$.
4. The summer detachment of 1915 consisting of Mr . Hanson with an average of 9 surveyors, commenced in April the survey of the following sheets, the work being still in hand at the end of September, viz.: $-43 \frac{\mathrm{~N}}{12,10}$,

This work was all on the 1 -inch scale, excepting parts of $\frac{N}{12}, \frac{\mathrm{~N}}{16}$ and $\frac{0}{13}$, which lay amongst high snows and were surveyed on the $\frac{1}{4}$-inch scale in order to complete degree sheets to margin.
5. Areas of survey to the end of September were as follows :-

In 1914. . . 623 square miles l-inch.
, 1915. . . 1,572 " and $\hat{k} 50$ square miles $\frac{1}{4}$-inch.
Total of new work 2,195 square miles 1 -inch and 250 square miles $\frac{1}{\frac{1}{4}}$-inch.
6. Triangulation in advance was continued by Mr. Miller up to the end of December 1914, in shets $43 \stackrel{0}{5,0,10^{\prime}}, 43 \frac{\mathrm{P}}{11,15}$, the total area subsequent to the end of September 1914 being 1,850 square miles. This leaves the party with over 3,300 square miles of triangulation in advance after the completion of the sheets now under survey. All computations have been completed, but no fair charts have been drawn.
7. Nature of country included all varieties common to the southern face of the Western Himālayas from the plains and foot-hills up to snowy peaks exceeding 20,000 feet in altitude. Two fatal accidents occurred to khalésis who were killed by falls in this difficult country ; otherwise the general health has been very good.
8. Office work.--Owing to the practice in this party of keeping detachments working in the higher hills during the summer, in addition to doing a normal programme of field work in the cold weather, the work of fair mapping has been falling into arrears of late years. The recent reduction of field work has, however, now enabled arrears to be practically cleared off. Thirty-five fair maps of difficult country have been sent in for publication during the year, and the arrears still in hand cousist of only seven sheets quite recently surveyed and all now approaching completion.
9. A $\frac{1}{2}$-inch mapping section, under Mr . Rae, commenced fair mapping on the $\frac{3}{8}$-inch scale at the beginning of April, using modern 1 -inch published sheets as material. 'The following six sheets were taken up and are now approaching completion :-

All four sheets of 43 G , and the two southern sheets of 38 O .
10. Cost-rates have been affected by the abnormal nature of the year's programme, but work out as follows :-

The total cost of the party was Rs. 90,052 .
11. Inspection.- The party was inspected once by the Surveyor Generai and on several occasions by the Superintendent, Northern Circle.

No. 2 PARTY.

By Me. B. R. Hugire.

1. The field head-quarters of the party opened at Gurgaon on the 9th November 1914, and closed on the 27th

Personnel.

Provincial Officers.
Mr. B. R. Hughes, in churge.
, F. B. Powell, from 1st October 1914 to 31st January 1915, and re-transferred from 1st June 1915.
" Kanak Singl.
, R. E. Saubolle.
, J. H. Johnson.
, J. A. Calvert.
Upper Subordinate Service.
Mr. Chuni Lal Kapur, from 1st April 1915.
, Lakshmi Dutt Joshi, from 1st January 1915.

Lover Subordinate Service.
27 Survejors, etc., in the field.
13 " \quad " employed on $\frac{1}{9}$-inch mapping.

March 1915, the recess quarters being at Mussoorie.
2. Topography.-The outturn of the party was :-

$$
\begin{array}{rr}
1 \text { inch }=1 \text { mile revision survey } & \begin{array}{c}
\text { Sq. milee. } \\
.2,550 \cdot 3 \\
1 "=1 ~
\end{array} \text { new survey } \\
1.8+3 \cdot 9 \\
\text { Total } & .3,394 \cdot 2
\end{array}
$$

In thirteen 1-inch sheets Nos. $44 \frac{0}{6 \operatorname{and} \theta^{\prime}} 53 \frac{\mathrm{C}}{1 \mathrm{C}^{\prime}}$, $53_{\overline{1,2,6,6,6,10},} \mathrm{D}, 11,19,144,15$.
3. Surveyors were divided into two camps under Messrs. Saubolle and Johnson.

Traverser lnayat-ullah Khan's services were transferred to No. 14 Party (Pendu-
lum) from the forenoon of the 19th April 1914, with a view to carrying on traversing for the survey of the Nepal Boundary.
4. The survey was carried out from plotted trijunctions where old data were fortheoming, and from trees and other conspicuous objects laid down from new traversing, and triangulation.

In certain sheets where the plotted points happened to be based ou different data, the position by survey of the same roads, etc., did not agree. This was due to the old revenue traverses not being sufficiently connected up with triangulated points which were then few and far between.

Values derived from connections with triangulated points brought up from Great Trigonometrical stations differed from the old revenue traverse values by nearly 3 chains in the southings and $1 \frac{1}{\frac{1}{2}}$ chains in the eastings.
5. Triangulation.--Mr. Calvert triangulated an area of 1,200 square miles for future $\frac{1}{2}$-inch detail survey in the Alwar State, in sheets $54 \frac{1}{2, \theta, 10,14, \text { portious ol7 and } 11}$.
6. Traversing.-Ahmad Husain Khan ran 136 linear miles of height traverse in flat country where triangulation was not found possible, in sheets $44 \underset{4 \text { nud }}{0}$ in the Bikaner State, and also 148 linear miles in open country in sheets $53 \frac{\mathrm{D}}{12 \text { (soth hatl) }}, 54 \frac{\mathrm{E}}{2 \text { 2and } \theta}$ in the Bharatpur State.
7. Fair mapping.-All the fair mapping of the 13 slneets surveyed durng the field season will be completed and sent for publication before the party leaves for the field, and is being carried out under two drawing sections with one typing section.

The 1 -inch plane-table sections, mostly surveyed in half sheets were blue. printed on the $1 \frac{1}{2}$-inch scale, one of the half sheets being blue-printed on drawing paper for direct drawing and the other half on tracing paper for translerring.
8. Cost-rates-

Revision survey, 1 -inch Rs. $9 \cdot 84$ per square mile.
New survey, 1 -iuch " $10 \cdot 20$ " "
Triaugulation " $3 \cdot 41$ "
Traversing $\quad 6.00$ per linear mile.
9. Health.-This was good throughout, only two eases of khaläsis down with pneumonia, being sent to local hospital for medical treatment, both recovering.
10. Inspections. -The Superintendent, Northern Circle, inspected the party during the field season and also in recess.

The Surveyor General inspected the party in recess in September 1915.
No. 3 Party.
Br Mb. H. H. в. Haser.

1. All the work lay in the United Provinces and embraced parts of the
following districts, Bijnor, Sahāranpur, Dehra Dūn, Garhwāl, Muzaffarnagar, Meerut, Naini Tāl, Bareilly, Pilibhit and Shāhjahānpur. With the exception of a little bit of the "Siwālik" hills in Sahāranpur and Dehra Dūn districts, and a portion of the Kumaun hills east of the Ganges river facing Hardwār, the country was flat, forest-clad areas were encountered along the foot hills also in the Taraì tahsil of Nainī Tāl district, and in parts of Pilibhit.

The field season opened at Najibābād on 2nd November 1914 and closed on 6th April 1915.
2. Topography.-The total area surveyed on the 1 inch=1 mile scale was

Captain F. F. Hunter, I.A., in charge to 24th November 1914.
Captain F. B. Scott, I.A., to 26th October 1914.
$P_{\text {rovincial }}$ Officers.
Mr. H. H. B. Hanby, from 17th November 1914, in charge from 25 th November 1914. E. J. Biggie.
", E. B. West, from lst November 1914 to 30th September 1915.
, H. T. Haghes.
", G. E. R. Cooper, from 1st November 1914.
,, Moqimuddin.
Upper Subordinate Service.
Mr. Mahomed Lutf Ali.
Muhammed Husain.
Lower Subordinate Service.
52 Surveyors, etc.
Training Section.
3 Papils.
-

Pereonnel.

Imperial Officers. $3028 \cdot 149$ square miles, of which $1359 \cdot 284$ square miles were re-survey and $1668 \cdot 865$ square miles revision survey, the whole being contained in eleven and a half 1-inch sheets, viz. :-

In the above is not included $53 \frac{\mathrm{~K}}{11 \text { boothera }}$ aal ; it was surveyed by the training section.

Three camps were formed and the following allotment of work was made : Mr. G. E. R. Cooper $53 \frac{\mathrm{~K}}{1,2,3,0,7, \text { a ad aorther halforiil }}$, Mr. Moqimuddin $53 \frac{\mathrm{r}}{\overline{0}, 10,13,-11}$, Mr. Mahomed Lutf Ali $53 \frac{\mathrm{P}}{11,15}$.

The average outturn per man per month for re-survey works out at 27.7 square miles and that for revision survey at 31.2 square miles.

The area revised was not carried out on blue prints of the original maps.
All trijunctions were plotted on fresh boards on to which the detail was transferred in blue, trijunctions being fitted over plotted trijunctions, and then checked in the field.

One would have thought that the progress of revising detail wouid have far exceeded that of re-survey, but owing to numerous changes since the last
survey, in rivers, extension of canal system, roads, railways, and new cultivation of lands at one time waste or forest-clad, the labour in the field was that of doing a new survey.
3. Triangulation.-Mr. E. B. West was employed on triangulation. The programme under this head embraced the following sheets :-53 $\frac{0}{2,6,7}$, for 4 -inch survey, and $53 \frac{\mathrm{~K}}{\overline{0}, 19,14}, 53-\overline{1, \overline{2}, \overline{5}, 0,8,10,13,14}$, for 2 -inch and $\frac{1}{2}$-inch survey, but with the intricate nature of the country, and the low convexity of the hills densely covered in trees with an absence of commanding peaks, he was only able to complete, before the monsoon broke, 830 square miles for future survey on scales 2 inches and $\frac{1}{2}$ inch to a mile in sheets $53 \frac{\mathrm{~J}}{12 \text { and } 19}$ portions only, $53 \frac{\mathrm{~K}}{5, \mathrm{R}, 10,13,14}$ and $53 \frac{0}{1,2,6,6}$. 90 square miles were also triangulated for a special forest survey, on scale 4 inches $=1$ mile, in sheets $53 \frac{0}{2,6,7}$.
4. The health of the party during the season under report was fair in the winter months but bad in May and June when Taraì fever became prevalent.
5. Traversing.-At the request of the Conservator of Forests, United Provinces, Western Circle, a special theodolite traverse of 398 linear miles was run in the Ràmnagar Forest Division falling in sheets $53 \frac{\mathrm{~K}}{14,15}$ and $53 \frac{0}{2,3,2 .}$. With the object of giving additionar points, 335 linear miles were traversed for a future surrey on the 1 -inch scale, in sheets $53 \frac{\mathrm{~K}}{16}$, and $\mathbf{8} 3 \frac{0}{3, \text { r }}$.

107 linear miles were further traversed for a special forest survey on the scale of 4 inches $=1$ mile in sheets $53 \underset{2,0, \bar{\gamma}}{\frac{0}{2}}$.

The traverse camp was under Mr. E. J. Biggie till the 6th March 1915 when he was transferred temporarily to No. 4 Party.
6. Recess duties.-During the recess the party completed the mapping of the following sheets on the scale of $1 \frac{1}{2}$ inches to 1 mile: $-53 \frac{\mathrm{~F}}{2,3,6,11}$, $53 \frac{\mathrm{p}}{\mathrm{p}, 10,11,19,14,16}$.

The remaining two sheets will be completed before the end of October 1915.
7. Inspection visits.-The party was inspected by the Superintendent, Northern Circle, in the field in February last, by the Surveyor General in recess in September, and visited on several occasions in recess by the Superintendent.

No. 4. PARTY.
By Mr. H. w. Biggie.

1. The field head-quarters of the party opened at Fyzābād on 19th October

Pbibonnel.
Imperial Officers.
Major L. C. Thuillier, I.A., in charge to 2nd Novomber 1914.
Captain R. Forter, I.A., in charge from 3rd to 21 st November 1914.

Provincial Officers.
Mr. H. W. Biggie, in charge from 22 nd November 1914.
", E.J. Biggie, from 8th March to 24th Mny 1915.
, H. P. D. Morton, from 17 th May 1915.
, J. C. C. Lears.
" Duni Chadd Puri.
Upper Subordinate Service.
Mr. Mohammad Husain Khan.
Lnmer Subordinate Service.
47 Surveyors, etc.

1914, and closed on 12th April 1915, the recess head-quarters continued at Mussoorie.

The area that came under survey comprises portions of the districts of Bāra Bankī, Fyzābād, Sultānpur, Partābgarh, Jaunpur, Azamgarh and Basti. It consists of flat plains which are highly cultivated and covered with orchards, mango trees being in great abundance. It is well-wooded but there is no forest, though shrub jungle occurs in many places. Village sites are numerous, and the area is densely populated. The prin- cipal rivers that run through portions of the area are the Gogra and the Gumti.
2. Topography.-The following sheets were fully surveyed :-63 $\frac{\mathrm{F}}{14,16,10}$ $63_{\overline{Q, ~}, \frac{1}{2}, 6,7,9,10,11,14,18}$. Field work was divided into three camps under Messrs. J. C. C. Lears, Duni Chand Puri and Mohammad Husain Khan.

The average rate of plane-tabling (excluding the time taken in marching), was 33.48 square miles per man for a month of 30 days. The cost-rate of detail survey on the scale of 1 inch to 1 mile is Rs. $9 \cdot 3$ per square mile.
3. Traversing.-This consisted of supplementary traverses which were run wherever required, to provide points for detail survey.
4. Triangulation.-This was started by Mr. E. J. Biggie in $63 \frac{\mathrm{E}}{13}$, but oring to dust haze in April and May the work was not completed, and will be taken up again in field season 1915-16 to provide points for the detail survey of the Nepal portion of the sheet.
5. Miscellaneous field work.-The Khetran-Leghari boundary between the Punjab and Baluchistān was demarcated by Captain R. Foster, I.A., at a cost of Rs. 1,316-11-3, which was paid for in equal shares by the two Governments concerned.
6. Recess duties.-The three camp officers mentioned in paragraph 2 above supervised the fair mapping which was divided into three sections. All fair maps of sheets surveyed during the field season will be completed and sent for publication about the end of October. Mr. Morton was employed on fair mapping and miscellaneous work.

Village boundary editions.-Twenty-three village boundary editions were prepared and sent for publication during the year.
7. Health of the party.-Four members of the party died during the year. Their names are Baldeo Prasad, Clerk, Narayan Datta, Atma Ram, and Bala Datta, Surreyors. Only one of these deaths, that of Atma Ram, was due to disease contracted in the field where the health of the party was good.
8. Inspection visits.-The Superintendent, Northern Circle, inspected the party during the field season in March, and visited the party during recess in May. The Surveyor General inspected the recess office of the party in September.

No. 20 PARTY-(CANTONMENT).

Bi Me. A. Efing.

1. During the year under report, the party was employed on the survey of

> Prbsonnel.
> Prorincad Officers.

Mr. A. Entocs in charge.
. F. C. Saint, frum 5th Octoler 1914.
Unper Subumbate Scure.
Mr. Iharmu.
Lorer Subjodinnte Service.
5 Sutwsirs.
10 [raftemen and Computers.
2 Clerks.
lи P_{11} :

Meerut, Dehra-Dūn, Landour, Sahāranpur and Hāpur (Bābūgarh) Remount Depôts on the scale of 16 inches to a mile; and surveyed the bazaars of Meerut and Debra Dūn on the scale of 64 inches to 1 mile. The triangulation and traversing of Peshāwar, Jullundur, Bannu, Kälka, Sanāwar and Bakloh have been completed in advance for season 1915-16. During the year Santa Cruz was re-traversed, a surrey of the proposed pipe-line for New Delhi was done for the Military Works Department and the Guide Map of Mussoorie and Landour brought up to date. Twentr-one fair maps bare already been sent for publication, eight fair maps will be sent for publication in a few days and fourteen sheets of Seerut have been drawn and examined.
2. The field season commenced in Meerut on 1st October 1914 and closed in Dehra Dūn on 30th September 1915 .
3. Owing to the party being employed on the survey of cantonments where sanitary arrangements are always good, there was not much sickness during the year. One khalasi died of pneumonia in Meerut. During the months of Mas and June cholera broke out among the troops in Dehra Dūn. The surveyors working there were promptly removed outside cantonment limits, and for two months very little work was done. This delayed the completion of the survey of Delura Dūn for nearly two months.
4. Topography.-As Mr. F. C. Saint on his transfer to this party had no previous experience in the work of a cantonment party, Mr. A. Ewing took charge of the detail survey during the year; but was assisted in the testing of field sheets by Messrs. F. C. Saint and Dharmu. Buth of them are now qualified to be placed in charge of sections and during next year they will be put in independent charge of six or seven surveyors employed on detail surveys.

The accuracy of detail surveys was thoroughly tested by Mr. A. Ewing by $24 \cdot 18$ linear miles of test lines in nearly every field sheet, and also by Messrs. F. C. Saint and Dharmu by $35 \cdot 93$ linear miles of partal in the five cantonments surveyed during the year.

The following table gives the outturn and costs of the survey of five cantonments surveyed during the year :-
Outturn.
19,260 acres on the 16 -inch scale
318 do. do. 64 -inch do.

The cost-rate of the 16 -inch survey, viz., Rs. 1.07 per acre, is less by Re. 0.23 than that of the last year's survey, but there is an increase of Rs. 2:63 in the cost-rate of the 64 -inch survey which is Rs. 11.52 per acre. This increase is due to the Sadar Bazar of Meerut being very congested and intricate.
b. Triangulation.-Sufficient number of stations and intersected points were fixed in Sahāranpur Remount Depôt, Kālka, Landour and Santa Cruz for the connection of theodolite traversing. Messrs. F. C. Saint and Dharmu were employed on the triangulation done during the year. The triangulation of Bakloh will have to be done during next season, as the mark-stones found on the ground were not those fixed by the triangulator in season 189 ± -95. The triangulation done during the year was sufficiently accurate for the purpose for which it was done, viz, fixing stations and points in and round the cantonments to connect the theodolite traversing and to check the chaining. 405 square miles of triangulation was done at a cost of Rs. 3,087-8-0.
6. Traversing.-During the year the traversing of Sahāranpur Remount Depôt, Hāpur (Bàbūgarh) Remount Depôt, Bannu, Peshāwar, Kālka, Sanāwar, Jullundur and Landour Cantonments was completed. Santa Cruz was re-traversed to prepare a table of bearings and distances of the boundary pillars.

The traversing done by each member of the party is :-

The theodolite traversing both in angular work and chaining is very good. 30 azimuths, 3,053 angles and 330 linear miles were done at a cost of Rs. 11,481.
7. Levelling.-Some levelling was carried out in Meerut, Sabāranpur Remount Depôt and Hāpur (Bābūgarh) Remount Depôt. In Meerut, in addition to the four bench-marks of the Great Trigonometrical Survey, twentyseven bench-marks were fixed by this party. No levelling was required in Debra Dün and Landour as there were enough Great Trigonometrical benchmarks in these cantonments. The levelling cost Rs. 862.
8. Recess duties.-Twenty-one fair maps have already been sent for publication, and eight more will be sent in a few days. Twenty-three sleets were drawn during the year. Ten sheets are in hand, and nine sheets of Dehra Dūn and Landour which were surveyed during the months of July, August and September are remaining to be drawn. These sheets will probably be completed in February 1916. The fair mapping was done under the supervision of Mr. A. Ewing, who examined all the sheets before sending them for publication. The cost of fair mapping for the year is Rs. 6,230. There is no arrear of fair mapping.
9. Programme for season 1915-16.-To be surveyed Peshāwar, Jullundur, Bannu, Kālka, Sanāwar, Bakloh, Simla lines, Upper Drosh, Lower Drosh, Fort Lockhart, Hangu, Thal and Chitrāl. To be triangulated and traversed in advance for season 1916-17, Rāwalpindi, Jhelum, Siālkot, Upper and Lower Topa, Chaman and Nimach.

RIVERAIN DETACHMENT.

By Mr. Maya Das Pubi, Rai Safib.

1. The field operations opened on the 1st October 1914, and closed early in

Pehsoniele.

Provincial Officer.
Mr. Maya Das Puri, Rai Sahib, in charge.
Upper Subordinate Service.
Mr. Paras Ram, fiom the 10th December 1914.
Mr. Vidya Dhor C'bopra, from the lst November 1914.

Lower Subordinate Service.
83 Sarveyors, etc. August 1915. Three traversers in Kängra and one in Simla, were, however, continuously employed during August and September 1915 for completing the work urgently required by the Settlement authorities.

The office was moved down from Dharmsala to Gujrat on the 15th October 1914. During January plague broke out at Gujrāt and so it was again shifted on the sth February 1915 from there to Campbellpur which was made the permanent head-quarters of the detachment from the 1st July 1915 on account of its being a healthy station.

During the year Mr. Paras Ram, Sub-Assistant Superintendent, supervised one of the Kangra field sections and plotting.

Mr. Vidya Dhor Chopra, Probationer (Upper Subordinate Service) was employed on traversing Simla proper and on computations.

Munshi Ganda Singh Naib Talsildar looked after the riverain, and the Simla (Hharauli and Kot Khai tracts) traversing, and a computing section.

Babu Ishwar Singl, Surveyor, continued to supervise the Kangra field work, and in addition got the Kāngra trunk road surveyed for the Executive Engincer, Provincial Dirision, Kāngra.

The detachment continued the work of traversing and laying out base lines. Twenty-one linear, and 37 square miles of main circuits, and 1,278 linear, and 231 square miles of minor traverse were run, and 5,387 theodolite stations fixed in the area under water action of the rivers Sutlej, Kâvi. and Chenäb in districts Jullundur, Siālkot, and Gujrät. One hundred and fiftynine corners of 53 rectangles were demarcated in 174 square miles with permanent mark-stones on the banks of the Chenāb (districts Gujrāt and Gujrānwàla) to serve as bases for the future survey and demarcation of boundaries in the bed of the river. Nine corners of 3 squares were re-demarcated at the special request of the Settlement Officer in a small portion of the Rāvi, $2 \frac{1}{2}$ miles long, in district Siallsot. One thousand two hundred and forty-eight plotted and 348 boundary " māsāvis" (Settlement mapping sheets) of 140 villages were completed, on the scale 40 karms , local unit of measurement varying in different districts, and twenty-two 4 -inch sheets, and twelve 1 -inch indexes were traced, and supplied in time to the Settlement Officers of Jullundur, Siālkot, and Gujrāt. Besides these 61 miscellaneous traces were prepared, and all the traverse stations marked during the year were plotted on twenty-one 4 -inch sheets. Four 4 -inch riverain boundary sheets were compiled, 9 sheets typed, and 3 sheets finally completed.

The following tables give full details of the riverain work completed during the year:-
(1).-Field work.

(2).-Office worl done for the cadastral surveys of Riverain estates.

Name of river.	Name of distriet.	Sente of masavis.		Nomber on comumpilited masnoisishow- ing riverain boundaries.	Number of sincots traced for the use of Bot entement oficers.n scalo 4 nches $=$ one mile.	
Sutlej	J ullundur	$\begin{aligned} & 165 \text { fect }=1 \\ & \text { inch. } \end{aligned}$	633	183	8	8
Revi	Siñlkot		1	...
Chenãb	Gujrät and Gujrānwala.	$\underset{\substack{2.20 \\ \text { incl. } .}}{ } f_{\text {cet }}=1$	815	165	13	13
		Total	1,2.18	3.8	22	21

Besides these twelve 1 -inch indexes, and 61 miscellaneons traces were prepared during the year.
(3). Office 100 rk done for the 4 -inch compilation of riverain boundaries.

2. The Kängra special survey was started at the end of October 1914 in the Kinngra tahsil in enntinuation of last year's programme under similar conditions as existed during the previous season. The Nürpur tahsil was taken up early in February 1915, and the work was divided into two camps, i.e., Nürpur under Mr. Paras Ram, Sub-Assistant Superintendent, and Kängra under Babu Ishwar Singh, Surveyor, but during April 1915 Mr . Paras Ram came to office owing to ill-health, and hence the two camps were again combined in May 1915. The field strength working out was reduced to one-half during A pril 1915 and the men thus relievel were either sent on departmental leave, or employed in office at the bead-quarters. The scale of the survey was generally 20 and 40 karms to an inoh except in a few villages which were plotted on the scale 80 $k a r m s$ to an inch. The length of the karm is $57 \cdot \mathrm{o}$ inches.

In order to reduce the cost no boundaries were enlarged from the topographical maps in the snowy portions and tracts covered with forest reserves except 2 miles of disputed State boundary falling in 3 " mäsívis" between the Chamba State and Nūrpur tahsil; but they were, however, independently surveyed loy the patwäris.

The cost works out to Rs. $118 \cdot 6$ per square mile. Rs. $5 \cdot 1$ are due to the grain compensation having been paid to the subordinutes and menials during the current season. After deducting this item it comes to Rs. $113: 5$ as compared with Rs. 1173 of that of the last year.

Three thousand four hundred and sixty-four linear, and 494 square miles werc traversed and triangulated. 19,824 stations were fixed with theodolite in 1,011 tikàs (sub-villages), and 4,834 plotted and 3 boundary māsāvis of 1,050 fikais completed during the year.
3. Under orders of the Punjab Government, the Simla Settlement Survey was started carly in November 1914 in the Bharauli tract of the Simla district. During January 1915 the Simla-proper was commenced where in addition to the ordinary work 272 stations (239 boundary pillars and 33 stones) with beights, were picked up for the Simla detachment. After completing the Simla tahsil, the Kot-Khai tahsil was taken up during May 1915. As the work here was urgently required by the Settlement authorities it was continued during the whole of summer. The ground here was more difficult than that of Kangra and so most of the stations were thrown by triangulation. The
average number of points laid out here works out to 57 per square mile, i.e., 43 per cent. more than what were fixed in Kāngra. The work was based on the triangulation of the old No. 18 Party (Himālayas). The scale of survey was 20 and 40 karms to an inch. One karm $=54$ inches. In all 1,106 linear and 53 square miles were traversed and triangulated, 2,989 stations fixed with theodolite in 174 villages, and 364 plotted and 13 boundary mäsävis of 136 villages completed.
4. With a view to prepare a correct map on the same basis as that of the Kāngra Settlement and thus to avoid future boundary disputes, the survey of the Kängra trunk road was undertaken during February 1915 at the request of the Executive Engineer, Provincial Division, Kāngra. Off-sets were taken on traverse lines to various boundary turnings and pillars and after applying the necessary oorrections to distances measured along the road, for elevation or depression, the results were plotted on the scale 200 feet to an inch. Portions of the road facing 16 important bazaars were plotted on the scale 50 feet to an inch. The plots were then tested on the ground in various places by the camp officer. Theodolite stations traversed for the Settlement Survey were generally utilized and in addition 4.18 fresh points covering 34 linear miles were laid out. In all 39 miles of the road were surveyed and completed, i.e., $36 \cdot 1$ miles from mile No. $48 \cdot 7$ to No. 84.8 and 2.5 miles from mile No. 89 to No. $91 \cdot 5$. 44 sheets (size of a sheet $=20$ inches $\times 28$ inches) were plotted and completed on the scale 200 feet to an inch, and 19 sheets on the scale 50 feet to an inch; and a trace of 2.5 miles was supplied to the Executive Engineer, Provincial Division, Kāngra. Traces of the remaining area are in hand and are expected to be finished by November 1915.
5. As required by the Deputy Commissioner, Lahore, a small area of 719 acres was traversed and surveyed on the scale 12 iuches to a mile to check the boundaries of grass land in the Lahore Cantonment given on lease by the Cantonment authorities. The traverse containing 33 stations and 7 linear miles was computed by using the magnetic bearing as it was not considered necessary, for economical reasons, to connect it with any traverse or trigonometrical station. The trace of the map showing discrepancies in area, etc., as compared with the plan already prepared by a miditary surveyor was supplied to the Cantonment Magistrate, Lahore.
6. Thirty-two stations covering 29 linear miles were re-demarcated in the Khushāb Thal (sandy area) as asked by the Settlement Officer, Shālpur ; and the cost debited to the Settlement Officer who recovered it from the zemindärs concerned.
7. The riverain area in the beds of rivers was, in general, full of shrubs, and in parts cultirated. Portions above the high banks were open, flat, and well wooded.

The Kàngra portion varied from open low-lying tracts in the Kāngra Valley to the high ranges of Nalru, Drun, Blingsutri, Lakka, and Mauhali Dhar's (spurs).

In Simla the ground consisted of high mountains from 3,500 to 9,500 feet high, mostly cultivated and partly covered with forest reserves.
8. The health of the detachment was good on the whole chiefly due to thr change of head-quarters, although cholera was raging in the Kangra Valley and plague in the riverain area. Two khaläsis, however, died at their homes while on departmental leave.
9. The Kāngra and the Simla surveys were connected with Hātidhār. H. S. XXII, Lipīānã H. S. XXI, Silpur H. Tower, Tirloknāth No. 1 H. S., Dhār If. Staff, Jamaurā H. Staff, Rihlū Fort, Sikot H. Staff, Yol H. Staff, Sukho H. S., Jasaur H. S., Kangaurtilā H. Staff, Mānītīlā H. S., Koprā H. S., Marüri H. S., and 69 stations of the old No. 18 Party (Himälayas), and the riverain work with Hazāra T. S. XXXIX.
10. The average errors in the three main classes of work were as follows:-

1. Riverain Survey-
(a) Base lines $1 \cdot 12$ feet per corner when compared with the theoretical values.

				Angular error per station in seconds.	Linear error in links per ten chaing.
(b) Main circuits		-	-	5•19	0.70
(c) Minor traverse		-	-	8.18	1.10
2. Kàngra traversing and triangulation		-	-	$8 \cdot 27$	1.77
3. Simla traversing and triangulation-					
(a) Simla proper		-	-	$3 \cdot 52$	$0 \cdot 49$
(b) Bharauli and Kot-Khai tracts		-	-	$3 \cdot 66$	$1 \cdot 10$

11. The total expenditure of the detachment from the 1st October 1914 to 30th September 1915 was Rs. 91,189 as detailed below :-

12. The detachment was inspected by the Surveyor General on the 15th November 1914 ; by the Superintendent, Northern Circle, on the 17th December 1914; and by the 1st Financial Commissioner, Punjab, on the 22nd March 1915.

SIMLA SURVEY DETACHMENT.

By Me. C. ©. C. Fience.

1. The head-quarters of this detachment remained in Simla during the season and continued the large scale survey of the station, including the work detailed in paragraph 3.
2. The area worked over embraces the town of Simla and the neighbourhood, hills ranging to 8,000 feet, covered in parts with heavy forest.

Perbonnel.

Provincial Officers.
Mr. C. E. C. French, in charge.
"W. H. Strong, from lat Janaary to 7tb August 1915.
O. D. Jackson, from 29th March 1915.

Upper Subordinate Service.
Mr. Chuni Lal Kapur, from 17th December 1914 to 1 st April 1915.
Paras Ram, to 9th Ieoember 1914.
"Imam Din, promoted from the Lower Subor-
dinate Service from lst July 1915.
Lower Subordinate Service.
14 Surveyors, etc., of whom 7 returned to their parties on the let April 1915.

FIELD' WORK.

3. The following work was done by this detachment:-
(a) Topography.-With accurate contouring of 2,700 acres in Simla, on a scale of 125 feet to 1 inch, completed by an average number of 8 surveyors.
(b) Large scale plans of 8 Bazaar blocks in Simla.
(c) Forest areas in Koti State; 8 square miles on a scale of 4 inches to 1 mile of actual forest land (with estates and villages inside forests, and overlap adjoining the boundary, or between adjacent forest blocks, an area of 14 square miles of country has been surveyed and mapped.)
(d) Simla Extension Area.-Hitherto a little over 1 square mile of country lying in Patiāla State has been surveyed. The exterior limits are theodolite traversed, with accurate contours at 20 -feet intervals. Building sites and forest classification are marked in the T'al block.
(e) Sanjauli-Spur Survey.-This plan was requisitioned by the Education Department to illustrate a proposed Indian College Scheme. Six surveyors of the detachment were employed on this for a fortnight. The area surveyed embraces $1 \cdot 3$ square miles of country, with contours at 50 -feet intervals.
(f) Under this heading are grouped a number of miscellaneous pieces of work, some of which are mentioned below :-
(i) Several plans and tracings from the Simla field sheets (with areas of some 81 acres) to accompany a proposed colonisation scheme, a building restriction area, and three road alignments.
(ii) A series of spirit levelled heights for proposed electric lifts, with two plans.
(iii) A trace of the Viceregal Estates in Simla, including a survey and plan of the Retreat in Mashobra, also similar maps of the Catchment Area, Nālba House Estate, and areas of proposed Bazaar improvement (the last with sectional drawings).

Aggregate cost Rs. 4,300.
4. The cost-rate form (Table III) not being suitable for work of this raried description on different scales, it has not been completed, the total area and tho total cost only being given.
5. Office work.-Ten fair sheets of the Simla survey are well advanced. The Koti State Forest map has been despatched. A tracing of the Sanjauli Spur survey with 6 ferrotype prints has been supplied and the fair map will be ready in a few days. Other information noted in paragraph $3(f)$ has been issued to the officers concerned.
6. The triangulation, traversing and mapping done by the detachment were relatively small, of a fragmentary nature and undertaken to meet special requirements; the expenditure for them has therefore been included under topograply.
7. The detachment has now the following work left to do :-
(a) Completion of 1,200 acres of the Simla survey.
(b) A proposed plan of 5.3 square miles of country on a scale of 8 inches to 1 mile, illustrating a boundary dispute between Patiāla and Koti States.
(c) Drawing of the remaining 21 shects of the Simla maps.

It is estimated that these works will be completed by March 1916.
8. Inspections.-The Surveyor General inspected the detachment on the 15th June; the Superintendent of the Circle on the 31st March, Colonel Ryder on the 14th July and Major E. A. Tandy from the 27th September to the lst October 1915.

SOUTHERN CIRCLE.

(Vide Index Maps 2 and 5).

Summary.-This Circle was under the superintendence of Colonel T. F. B. Renny-Tailyour, C.S.I., R.E. throughout the year and consisted of Nos. 5, 6, 7 and 8 Parties, No. 4 Drawing Office and a Training Section.

During the year 19,286 square miles of detail survey, 14,516 square miles of triangulation and 186 linear miles of theodolite traversing have been completed.

The detail survey consists of :-

5,096	square miles of	$\frac{1}{2}$-inch survey.	
9,532	$"$	$"$	$"$
l-inch survey.			
3,547	$"$	$"$	$"$
l-inch revision survey.			
134	$"$	$"$	$"$
l-inch supplementary survey.			
508	$"$	$"$	$"$
$4 \frac{1}{2}$-inch survey.			
469	$"$	$"$	$"$
2-inch survey.			

In spite of the reduction in the number of the supervising officers on account of the war, the full programme of detail survey, which is a record yearly outturn for the Circle, has been practically completed, but, on the other hand, very little more than two-thirds of the programme of triangulation has been completed.

The following work was undertaken in the Photo-Zinco Section of No. 4 Drawing Office:-

No. 5 PARTY (CENTRAL PROVINCES AND BERAR)
By Mr. J. o'lb. Donaghey.
This party completed the detail survey on the 1 -inch scale of sheets Personnel. $\quad 551, \overline{5}, 6, \overline{7}, \overline{8}, \overline{9}, 10,1 \overline{1}, 12,13,14,15,16,55 \frac{\mathrm{~K}}{1,2,3}$ and on

Imperial Officers.
Captain E. C. Baker, R.E., in obarge to 21st October 1914.
Lieutenant R. S. Wabab, I,A, to 21at October 1914 and in charge from 22ad October to 28th November 1914.

> Provincial Officers.

Mr. J. O'B. Donaghey, to 28th November 191.4 and in charge from 29 th November 1914.
F. C. Piloher.
", Monshi Lal, B.A.
C. O. Picard.
A. V. Dickend, to 8th July 1015.

C'pper Subordinato Service.
Mr. Eknalh Eattu.
"Damodar Kadilsur, from 14 th October 1914.

Lower Subordinate Service.

32 Surveyors, etc.

the 2 -inch scale of a small area of resevred forest in $55 \frac{9}{9}$. The party also completed the triangulation of sheets $5 \check{5} \frac{0}{1,2,3, f, 5,6,7,8,0,10,12,14,10}$ and carried out theodolite traversing in sheets $55 \frac{\mathrm{c}}{12,16}$.

The general nature of the country consists of forest-clad hills, undulating open uplands and highly cultivated plains.

The field season opened on the 23rd October $191 \pm$ and closed on the 30th April 1915. The field head-quarters was at Betül.

The health of the party during the first three months of the field season "as indifferent, malarial fever being prevalent in the country along the Tapti
river. One khalāsi died during the field season and, owing to bad health, Mr. Dickson had to proceed on three months' leare.

Topography.-The i-inch survey portion of the country varies from some intricate hilly groumd along the Tapti river to the open undulating uplands of the Sātpura plateau and the highly cultivated plains of Berãr. The l-inch rerision survey and the 2 -inch survey portions consist entirely of forest-clad hills of the Sätpurì and Gaiwilgarh ranges. The elevation of the country surreyed varies from under 1,000 feet in the Berār plains to 3,864 feet, the highest point of the Gāwilgarh hills; the average elevation of the Sātpurà plateau portion is over 2,200 feet.

The work was distributed as follows :-
So. 1 Canp. - Under Messrs. Donaghey and Damodar Kadilkur with 8 survejors carried out the detail survey on the 1 -inch scale in sheets $55 \frac{9}{13}, 55_{1,5}^{K}$.
No. 2 Camp.-Under Mr. Pilcher with 8 surveyors carried out detail survey on the 1 -inch scale in sheets $55 \sqrt{1,5,6,0,10, \overline{10}, \overline{14,15}}$.
No. 3 Camp.—Under Mr. Munshi Lal with 11 surveyors carried out detail survey on the 1 -inch scale in sheets $55_{\overline{7, ~}, 11,12,10}^{G}, 55 \frac{\mathrm{~K}}{\mathbf{3}}$ and surveyed on the 2 -inch scale a small area of reserved forest in sheet $55 \frac{9}{1}$.
No difficulty was met with in the 1 -inch survey, the country being fairly open throughout and interpolation easily obtainable. The area of the 1 -inch revision survey was comprised of reserved forests, previously surveyed on the 4inch scale ; after reduction by photography of the 4 -inch published maps to the l-inch scale, vandyked prints in blue were obtained of the reduced work on 1 1ristol boards, on which the revision work was carried out in the field. The old 1 -inch work was found to be of a reliable quality.

The full programme of the party amounting to 4,435 square miles was completed. The outturn of the 1 -inch survey, of the 1 -inch revision survey and of the 2 -inch survey was $3,070,1,357$ and 8 square miles respectively, the average monthly outturn per man was $30.2,58.7$ and 7.6 square miles respectively and the cost-rate per square mile was Rs. $11 \cdot 1$, Rs. $7 \cdot 0$ and Rs. $25 \cdot 9$ respectively.

Triangllation.-The nature of the country is hilly, interspersed with open undulating areas.

Mr. Picarl completed an area of 2,217 square miles in sheets $55_{\overline{1,2,9,9,7, ~} \frac{c, i 2,18}{}}$, Mr. Dicison, who was absent on sick leare for three months during the field scason, completed an area of 829 square miles in sheets $55 \frac{\mathrm{C}}{5,6,0}$ and Mr . Eknath Battu, who was also employed on traversing, completed an area of 460 square miles in shects $5 \mathrm{Sa}_{\mathrm{in}}^{\mathrm{c}} \mathrm{c} 14$.

The total outturn was 3,506 square miles and the cost-rate per square mile was R.s. 6.1.

Traoersing. -The nature of the country is flat.
Mr. Eknath Battu, during part of the field season, completed 42 linear

Connections were made with trigonometrical stations and 7 a,imuths were observel.

The cost-rate per linear mile was Rs. $24 \cdot 2$.

Recess duties.-The fair mapping was divided between two sections as follows :-

No. 1 Section.—Onder Mr. Pilcher, sheets $55 \frac{0}{1, \overline{1,6,0,0,10,14}}, 55 \frac{\mathbb{R}}{1,21}$.

The fair mapping of these sheets should be completed by the end of 1915.

The total area of fair mapping was 4,427 square miles and the cost-rate per square mile was Rs. $3 \cdot 0$.

The computations of the triangulation, under the supervision of Mr. Picard, were not completed on acoount of the reduction in the number of officers due to the war.

Triangulation charts $54 \mathrm{~L}, 55 \mathrm{~N}$ are in hand.
Miscellaneous. -The following information will be found useful when the survey of the country, dealt with in this report, is being revised :-The correct delineation on the 1 -inch scale, of undulating or more or less flat country, by contours at vertical intervals of 50 feet and by the judicious use of form lines, requires a considerable amount of skill; and in this respect a 1 -inch topographical map under revision could always be improved on by the employment of suitable men in the figld work. It would thus be advisable to employ a surveyor with a "good eye for country" in the revision of sheets $55_{\overline{8,10,11,12,13,19,15,10}}$, 55 $\frac{\mathrm{K}}{1,2,3}$.

The country along the Tapti river and in the Melghāt tāluk of the Amraoti district is notoriously malarious during the months of October, November and December; it would, therefore, be advisable not to undertake field work in sheets $55_{\frac{1,6,0,7, \theta, 10,11,14}{}}$ before the 1st January.

Camel transport will be found most convenient for triangulators and camp offcers, plane-tablers can always obtain carts.

No. 6 PARTY (BERAR, BOMBAY AND HYDER $\AA B A D)$.
By Mijor L. C. Thuillier, I.A.
This party completed the detail survey on the 1 -inoh scale of sheets $55 \frac{\mathrm{D}}{108}$

Prifonnel.

Imperial Officers.
Lieutenant-Colonel F. W. Pirrie, I.A., in charge from 22nd October to 8th December 1914.
Major L. C. Thuillier, I.A., in charge from 9 th December 1914.
Captain K. W. Pye, R.E., in oharge to 2lst Ootober 1914.

Provincial Officers.

Mr. P. R. Anderson, from 14th June 1915.
" E. A. Meyer.
" Haji Abdul Rshim, K.B.
, F. B. Kitchen.
" R. B. Gildea, to 25th May 1915.
", J. C. St. C. I'ollett, from 1st July 1915.
", K. S. Gopalachari, B.A.
"J. O'C. Fitzpatrick, to 10 th June 1915.
Upper Subordinate Serrice.
Mr. Ram Narajan Hastir.
Lower Subordinate Service. 33 Surveyors, ete. and on the $\frac{1}{2}$-inch scale of sheets $47_{\frac{M}{\text { N.W.,N.E. S.E. }}}, 56_{\frac{\mathrm{N}, \mathrm{W}, \text {, }, \text {,W, }}{}}$, except that small areas of reserved forests in sheets $\delta 5_{\frac{D}{1,3,6,8}}$, $56 \frac{1}{i}$ were surveyed on the 2 -inch soale and the areas of Bombay and Berār in sheets
 1 -inoh scale. The party also undertook the triangulation for the $\frac{1}{2}$-inch scale of sheets $56_{\frac{3,4,7,8,10,11,12,17,15,18}{18}}, 56_{1 \text { 1 }}{ }^{\mathrm{F}}{ }^{16}$.
The general nature of the country is varied, consisting to the north of intricate hills and to the south of broad undulating valleys and cultivated lands broken by rocky ridges with occasional high and rocky flat topped hills.
The field season opened on the 23rd October 1914and closed on the 17th April 1915. The field head-quarters was at Aurangābäd.

The health of the party was good.
Topographu.-The nature of the country surveyed is varied ; open plains, undulating country and intricate hills for the $\frac{1}{l}$-inch survey, intricate hills and rough country for the 1 -incl survey, open plains and undulating hills for the 1 -inch revision survey and intricate ground with thin forests for the 2 -inch surrey.

The work was divided among four camps as follows :-
No. 1 Camp.-Under Mr. Meyer with 5 surveyors carried out dftail survey in sheets $47 \frac{\mathrm{M}}{\mathrm{N} . \mathrm{w}, \mathrm{N} . \mathrm{E}}$.
No. 2 Camp. - Under Mr. Kitchen with Mr. Gopalachari and 11 surveyors completed the detail survey in sheets $55_{\frac{1}{1,2,3,5,8,7}}$.
No. 3 Camp.-Under Mr. Gildea with 8 surveyors completed the detail survey in sheets $55 \frac{\mathrm{D}}{\mathrm{J}, \mathrm{B}}, 56 \frac{\mathrm{~A}}{\mathrm{~N} . \mathrm{W}}$.
No. 1 Camp,-Under Mr. Fitzpatrick with 3 surveyors carried out the detail survey in sheets $47 \frac{\mathrm{M}}{\mathrm{B} \cdot \mathrm{E}, 5}, 56 \frac{\mathrm{~A}}{\mathrm{~B}, \mathrm{~V},}$.
The full programme of the party, amounting to 7,640 square miles, was completed. The contour interval for the $\frac{1}{3}$-inch scale was altered from 50 feet to 100 feet during the field season, this would probably tend to improve the outturn, but since cultivation and jungle limits with the exception of small unimportant areas are now being putin, the changes will more or less balance each other.

The outturn of the $\frac{1}{9}$-inch survey, of the 1 -inch survey, of the 1 -inch revision surrey and of the 2 -inch survey was $5,096,2,261,261$ and 22 square miles, respectively, the average monthly outturn per man was $80 \cdot 1,26 \cdot 6,29 \cdot 0$ and $5 \cdot 6$ square miles respectively and the cost-rate per square mile was Hs. $\delta \cdot 3$, Rs. $10 \cdot 6$, Rs. 9.7 and Rs. $20^{\circ} 0$ respectively. Areas of $\overline{0}, 096$ and 298 square miles of $\frac{1}{\frac{1}{2}}$ inch and 1 -inch survey respectively were in Hyderāhäd. The figures for the 2 -inch scale include plane-table surveys on the 4 -inch scale of reserved forest boundaries; 4 of the 22 square miles, given as the area surveyed on the 2 -inch scale, were actually surveyed on the 4 -inch scale, the boundary and the detail surrey being combined, this action was economical owing to the intricate nature of the boundary.

Triangulation.-The nature of the country triangulated is low broken bills and undulating valleys.

Mr. Haji Abdul Rahim oompleted an area of 5,077 square miles in sheeto $56 \frac{\mathrm{~B}}{15,10}, \overline{\mathrm{~b}} 6 \frac{\mathrm{~F}}{1010}$, and Mr. Ram Narayan Hastir completed an area of 2,258 square miles in sheets $56 \frac{\mathrm{~B}}{\overline{3,3, \overline{,}, 8,10,11,13,14}}$. The triangulation was carried out for the $\frac{1}{5}$-inch scale.

The total outturn was 7,335 square miles and the oost-rate per square mile was Rs. $3 \cdot 1$. An area of 7,277 square miles was in Hyderābād.

Recess duties.-The fair mapping was divided among four seotions as follows:-

Vo. 1 Section.-Under Mr. Anderson, finch sheets $47 \frac{\mathrm{a}}{\mathrm{g}, \mathrm{E} .}, 56 \frac{\mathrm{~s}}{\mathrm{~s}, \mathrm{w} .}$ and 1 -inch sheets $47 \frac{m}{11,12}$.

No. 3 Section.-Ünder Mr. Kitchen, 1 -inch sheets $55 \frac{\mathrm{D}}{1,2,3,6, \overline{6}, 7}$.
No. 4 Section, - Under Mr. Pollett, $\frac{1}{\mathbf{d}}$-inch sheet $56 \frac{1}{\text { r. }}$. and 1 -inch sheets $55 \frac{\mathrm{n}}{\mathrm{an}}, 56 \frac{\mathrm{~A}}{1.0}$.

All the sheets were completed to margin with the exception of the 1 -inch sheets $47 \frac{\mathrm{a}}{1,2,0,11,12,13}, 56 \frac{\mathrm{~A}}{1,5}$ which only contain the areas of Bombay or Berär falling in them. No. 4 Drawing Office lent some draftsmen to assist the work and all the fair mapping should be completed by the end of the recess season.

The total area of fair mapping was 8,220 square miles (5,605 square miles for the $\frac{1}{2}$-inch scale and 2,615 square miles for the 1 -inch scale) and the costrate per square mile was Rs. 23. Areas of 5,219 and 175 square miles of fair mapping for the $\frac{1}{2}$-inch and 1 -inch scales respectively were in Hyderābäd. An area of 386 square miles in Bombay and Berãr was fair-mapped for both the $\frac{1}{2}$-inch and 1 -inch scales.

The computations of the triangulation were completed under the supervision of Mr. Haji Abdul Rahim.

Triangulation charts $\mathbf{5 5} \mathrm{D}, 56 \mathrm{E}$ were practically completed and charts $47 \mathrm{M}, 56 \mathrm{~A}$ are in hand.

No. 7 Party (Madras, MYSORE AND PONDICHERRY).
By Me. W. M. Gobman.
This party completed the detail survey on the 1 -inch scale of sheets

Prisonnei. Imperial Officers.
Lieutenant-Colonel F. W. Pirrie, I.A., in charge to 21 st October 1914.
Captain J. D. Campbell, R.E., to 21st October 191 J.

Provincial Officers.
Mr. W. M. Gorman, to 21st October 1914 and in charge from 22nd October 191.
, C. S. Littlewond, to 16th August 1915.
, V. W. Morton, from lst July 1915.
"C. West.
„ H. H. P. Eutterfield.
J. C. St. C. Pollett, to 30 th June 1916.
N. S. Harihara Iser.

Upper Subordinato Service.
Mr. Abdul Hakk, K.S.
" Kodandera Mandanna.
, H. Narasimhamurti Rao.
Lower Sulordinate Service.
29 Surverors, etc.
$\therefore 7 \frac{G}{3,4,7,11,15}, 57 \frac{H}{1,2,6}, 57 \frac{P^{\prime}}{1,3,4,5,5,6,7,8,11,12,15,16}$, with the exception of small ereas of reserved forests in $57 \frac{p}{\overline{3}, 4,7,11,16}$ which were surveyed by the party on the 2 -inch scale and of sheet $57 \frac{\mathrm{H}}{6}$ and of a portion of shect $57{ }_{2}^{\mathrm{H}}$ - which were surveyed by the Traiuing Section on the 2 -inch scale. The party also undertook the triangulation of sheets $57-\frac{0}{1,2,5,6,0,10,13,14}$.

The general nature of the country consists of forest-clad hills, mostly reserved forests, lower rocky hills covered with scrub or deroid of vegetation, open cultivated plains with detached rocky knolls and rocky outcrop and the open undulating plateau land of Mysore. The mhole country is mell served with main and other roade in a fairly good state of repair, rendering access to any part of it easy and convenient. Large sized bullock carts ure obtainable ereryonere but coolies are difficult to get as they are much in demand by the cultivators of these parts.

The field season opened between the 2 nd October and the 1st December 1914 and closed hetween the 7th March and the 5th May 1915; the work in shects $57 \mathrm{G}, 57 \mathrm{E}$, commenced and ended on earlier dates than the work in alheet 57 P. As the party in October 1913 expericuced the full force of the north-enst monsoon while working in the locality adjoining this season's programme in Madras, the departure of the party was delaped a month with great advantage to the work. It is not advisablin to take the field in these parts of Madras before November or to prolong it after the end of A pril wh"n the heat locomes unhearable. The field head-quarters was at Bangalore.

The health of the party throughout was good.

Topography.-The country surveyed in Madras breaks away from the high hills mostly covered with reserved forests of the Javadi range on the extreme west limit of the work, to alternations of flat ground and lower rocky hills covered with scrub or devoid of vegetation and finally to extensive and highly cultivated plains, containing large villages sheltered in dense groves of palmyra palm and other trees, and only broken here and there by detached rocky knolls and outcrop of rock and sand hills on the coast. The area in Madras embraces many places of historical interest such as Arcot, Arni, Wandiwäsh, Gingee, Vellore and several towns. The Pālār river with its tributary the Cheyyãr traverses a part of the work. The country is covered with a network of communications. After a good monsoon the low ground in Madras, well served with tanks and wells, is extensively and constantly under paddy cultivation to the end of April and as many as three harvests are reaped; this hampers the work to the extent of surveyors having to go treble the distance they would ordinarily take. Open and undulating plateau land, broken here and there by a group of fairly high hills mostly covered with reserved forests and rising abruptly to a height of 4,847 feet, marks the features of the ground surveyed in Mysore. This country is well served with many main roads, etc., rendering communication easy. Several towns and the famous fortified hill of Nandidroog fall in the work in Mysore.

The work was distributed as follows :-
No. 1 Camp.—Under Mr. West with Mr. Littlewood and 6 surveyors earried out revision survey on the 1 -inch scale of 1,640 square miles in sheets $57 \frac{G}{3,4,7,11}, 57 \frac{\mathrm{H}}{1,2}$.

No. 2 Camp.-Under Mr. Butterfield with Mr. Harihara Iyer and 6 surveyors carried out survey on the 1 -inch scale of 1,068 square miles and supplementary survey on the 1 -inch scale of 88 square miles in sheets $57 \frac{\mathrm{P}}{1,5,6,7}$.

No. 3 Camp.-Under Mr. Pollett with 8 surveyors carried out survey on the 1 -inch scale of 1,324 square miles, supplementary survey on the 1 -inch scale of 34 square miles and survey of reserved forests on the 2 -inch scale of 10 square miles in sheets $57 \frac{\mathrm{P}}{8,11,12,15,16}$.

No. 4 Camp.-Under Mr. Abdul Hakk with 6 junior surveyors carried out survey on the 1 -inch scale of 529 square miles, revision survey on the 1 -inch scale of 289 square miles, supplementary survey on the 1 -inch scale of 12 square miles and survey of reserved forests on the 2 -inch scale of 42 square miles in sheets $57 \frac{\mathrm{G}}{15}, 57 \frac{\mathrm{P}}{3.4}$.

In addition to the above an area of 387 square miles of survey on the 2 -inch scale in sheets $57 \frac{\mathrm{H}}{2}, \mathrm{\pi}$, which was carried out by the Training Section during 1913-14 and 1914-15, was accepted by the officer in charge of the party who satisfied himself that revision was unnecessary. This area has been included in the total outturn of the party but has not been included in the figures giving the average monthly outturn per man or the cost-rate per square mile, for the 2 -inch survey.

The 1 -inch survey in Madras was considerably hel ped by the work of the Madras Survey Department which was found accurate and satisfactory; from the standard sheets, supplied on thin bankpost paper, transfer of the work in blue was carried out by the surveyors as the work progressed, this was gone over and checked by them as rigorously as if 1 -inch original work. For the revision survey the 1 -inch maps of the old Mrsore topographical survey were
found very accurate in detail but had to be considerably supplemented and recontoured to bring them up to the modern standard, the country was ideal and presented no difficulty. Black tracing prints of the above sheets for survey were procured and transferred piecemeal on the planc-table as work progressed, with the usual rigorous checking by surveyors as if original work. For the l-inch supplementary survey the 4 -inch forest surveys were first reduced to the $1 \frac{1}{2}$-inch scale on blue prints, these were inked up in detail and the shape of the ground also indicated so as to help when recontouring ; each print was then adjusted by the trigonometrical points common to it and to a $l_{\frac{1}{2}}$-inch projected and plotted sheet ; the whole was finally reduced and printed on to the plane-table sections. This class of survey was checked and supplemented where necessary and recontoured. The 2 -inch reserved forest survey was located mostly in open flat country with low rocky hills within commanding distance rendering sarvey easy, where the forest was dense traversing with the plane-table and chain had to be resorted to and it was begun and closed on fixings obtained at intervals.

The full programme of the party, amounting to 5,423 square miles, was completed. The outturn of the 1 -inch survey, of the 1 -inch revision survey, of the 1 -inch supplementary survey and of the 2 -inch survey was $2,921,1,929$, 134 and 439 square miles, respectively, the average monthly outturn per man was $26.8,30.0,51.7$ and 7.0 square miles respectively and the cost-rate per square mile was Rs. $9 \cdot 5$, Rs. $9 \cdot 0$, Rs. 6.0 and Rs. $30 \cdot 9$, respectively.

Triangulation.-The country triangulated extended from the Eastern Ghäts, locally known as the Tirupati lills, on the west to the undulating and flat country on the east and presented no difficulties.

Mr. Kodandera Mandanna completed an area of 1,155 square miles in sheets $57 \frac{0}{1,2, \bar{B}, 0}$ and Mr . Narasimhamurti Rao an area of 1,154 square miles in sheets $57 \underset{8, \frac{0}{0,13,13} \text {. }}{ }$. In addition to the points now fixed about 300 points, fixed by triangulation when the reserved forests in this area were surveyed, will also be utilised.

Charts on the $\frac{1}{1}$-inch scale, supplied by the Madras Survey Department containing their traverse stations and trijunctions, enabled the triangulators to fix the same and to check the accuracy of the wotk to be surveyed topographically. Several traverse stations were fixed and compared with the Madras Survey values and are in agreement. This agreement confidently entitles the surveyors to utilise all village trijunctions in the plains, where trigonometrical points are not available or too far apart, as beginning and olosing points for their traverses. The programme included sheet 66 C , but it was found that there already exists sufficient material in this sheet without any new work being necessary.

The total outturn was 2,309 square miles and the cost-rate per square mile was Rs. 7•0.

Recess duties.-The fair mapping was divided among four sections as follows:-

No. 1 Section.—Under Mr. West, shects $57_{\frac{G}{5,4,7,11,15},} 57 \frac{\mathrm{H}}{1,2}$.
No. 2 Section.-Under Mr. Butterfield, sheets $57 \frac{\mathrm{P}}{1,5,6,7}$.
No. 3 Section.—Under Mr. Morton, sheets $57_{\frac{\mathrm{F}}{11,12,16,10}}$.
No. 4 Section.— Under Mr. Abdul Hakk, shects $57 \frac{\mathrm{H}}{6}, 57 \frac{\mathrm{P}}{3,4,8}$.
No. 4 Drawing Office lent some draftsmen to assist the fair mapping. Seven sheets have been submitted to the Superintendent and the fair
mapping of the remaining 12 sheets will be completed by the end of the recess season.

The total area of fair mapping was 5,423 square miles and the cost-rate per square mile was Rs. 4.5 .

The computations of the triangulation carried out during the field season, together with some arrears from the previous year, were completed under the supervision of Mr. Littlewood.

During previous years the work on the triangulation charts of this party has been allowed to get considerably in arrears. The preliminary triangulation charts $48 \mathrm{~L}, \mathrm{O}, \mathrm{P}, 57 \mathrm{D}, \mathrm{H}, \mathrm{L}$ were received from the Superintendent of the Trigonometrical Survey and were put in hand ; of these, charts $48 \mathrm{~L}, 57 \mathrm{~L}$ are near completion and the remainder are still in the rough abstract stage embracing work solely done by the party and requiring incorporation of the Mysore topographical triangulation, etc., they will be taken up on return of the party to recess in 1916. It is hoped that the triangulation charts will he brought up to date by the end of next year.

No. 8 PARTY (MADRAS).
By Mr. W. F. E. adamg.

This party completed the detail survey on the 1 -inch scale of sheets

Prisonsel,

Imperial Officers.
Major L. C'. Thuillier, I.A., in charge from 9th November to 3rd December 1914.
Major C'. N. Erowne, D.S.O., R.E., in charge to 21 st October 1914.

Provincial Officer's.

Mr. W. F.E. Adawa, to 21 st October 1914. in charge from 22 nd October to 8 th November 1914, from 9 th November to 3 rd December 1014 and in charge from 4 th December 1914.
Mr. S. F. Norman.
, J. H. Williame.
". P. Kennegy.
", M. Mahadeva Mudaliar, M.A.
Upper Subordinate Sercice.
Mr. Anantarao Dhandiba Mandhre, E.S.
, K. Narayanasvami Chetti
,. P.S. Vengusvami.
Lomer Sulordinate Scrice.
36 Sur.eyore, etc.
$58 \frac{\mathrm{D}}{7,8}, 58 \frac{\mathrm{H}}{1,2}$ and portions of sheets $58 \frac{\mathrm{D}}{14}$, $58{ }_{3}{ }^{-}$and on the $1 \frac{1}{2}$-inch scale of sheets $58_{0, \frac{D}{15}}$ and the remaining portions of sheets $58 \frac{1}{1-}, 58 \frac{\mathrm{H}}{3}$. The party also undertook the triangulation of sbeets $58 \frac{H}{0,1 \mathrm{ri}}$ and of portions of sheets $58 \frac{\mathrm{H}}{6,0,10,19}$ and carried out theodolite traversing in sheets $58 \frac{\mathrm{D}}{1,1,15}, 58 \frac{\mathrm{II}}{3,4,8}$.

The gencral nature of the country is very varied in character and extends from the densely inhalited and intricate country along the coast to the high range of mountains separating the Travancore State from the Tinnevelly district, most of the high ground is forest-clad, uninhalited and difficult of access.

The field season opened on the 12th December 1914 and closed on the 10th June 1915. The party proceeded to, and returned from, the fiell by special trains, but owing to a breach of the railway near Tinnevelly due to floods, the party was delayed for two days on the way to the field. The field head-quarters was at shencottah.

The health of the party was fair considering the climatic conditions, men working in the high range suffered a good deal from the cold and rain, while in the dunse forests leeches and wild elephants nere very troublesome.

Topography. The nature of the country surveyed varies greatly, along the coast the country is undulatiug, enclosed and densely populated, while the
high range of mountains, separating the Travancore State from the Tinnevelly district and rising to a height of over 3,000 feet, is mostly covered with dense forest, uninhabited and difficult of access. The Tinnevelly plain is well oultivated and is covered with small tanks.

The rork was divided among four camps as follows :-
No. 1 Camp.-Under Mr. Norman with Messrs. Narayanasvami Chetti and Vengusvami and 6 surveyors completed the survey of sheets $58 \frac{0}{7,8}$ and afterwards assisted No. 4 Camp.

No. 2 Camp.-Under Mr. Williams with 8 surveyors surveyed sheet $58 \frac{1}{1}$ and afterwards assisted No. 3 Camp. The country in this sheet is uninhabited and very difficult of access, no labour or transport was procurable locally and, as no provisions were obtainable, complete arrangements had to be made by collecting supplies in suitable places.

No. 3 Camp.-Uuder Mr. Mahadeva Mudaliar with 10 surveyors surveyed sheets $58 \frac{\mathrm{D}}{\mathrm{g}, 14,15}$, the country near the coast in these sheets is covered with huts, but only those of a more or less permanent character were surveyed. The important towns of Quilon and Trivandrum were surveyed by this camp.

No. 4 Camp.-Under Mr. Anantarao Dhondiba Mandhre with 7 surveyors surveyed sheets $58 \frac{\mathrm{H}}{2,3}$. The country in sheet $58 \frac{1}{2}$ is similar to the country in sheet $58 \frac{14}{1}$, one of the peaks being over 6,100 feet above sea level.

Owing to the extremely intricate nature of the country, the survey along the coast was carried out, as in previous years, on the $1 \frac{1}{2}$-inch scale. The work, on both the 1 -inch and $1 \frac{1}{2}$-inch scales, was, except in the Tinnevelly plain, very difficult and the total area surveyed, amounting to 1,788 square miles, is consequently very small. The outturn of the 1 -inch survey and of the $1 \frac{1}{2}$-inch survey was 1,280 and 508 square miles, respectively, the average monthly outturn per man was 13.8 and 8.5 square miles, respectively, and the cost-rate per square mile was Rs. $39 \cdot 3$ and Rs. $34 \cdot 5$, respectively. Although the monthly outturn of the 1 -inch survey is considerably greater than that of the $l_{\frac{1}{3}}^{1}$-inch survey, the cost-rate of the former is actually greater than that of the latter, this is due to the exceptionally large expenditure incurred in the survey on the 1 -inch scale on account of the very difficult nature of the country.

Triangulation.-The nature of the country triangulated is undulating and cultivated.

Mr. Kennegy, who suffered a good deal from fever, completed an area of 1,366 square miles in sheets $58_{\overline{\bar{b}, \bar{b}, 0,10,13,14}}$. The cost-rate per square mile was Rs. 10.8 .

Traversing. -The country traversed is along the coast and of a very intricate natere.

One traverser, assisted by a surveyor, completed 144 linear miles in sheets $58 \frac{\mathrm{D}}{14,25}, 58 \frac{\mathrm{H}}{3,4,8}$. The cost-rate per linear mile was Rs. $24 \cdot 8$.

Recess duties.-The fair mapping was divided between two sections as follows :-

No. 1 Section.—Under Mr. Norman, sheets $58 \frac{\mathrm{a}}{\overline{7}, 8}, 58 \frac{\mathrm{H}}{1,9}$.
No. 2 Section.-Under Mr. Williams, sheets $58 \frac{\mathrm{D}}{\sqrt[3,16,15]{2}}, 58 \frac{\mathrm{H}}{2}$.
The fair mapping of all these sheets should be completed by the end of 1915. The fair mapping of sheets $58 \frac{\mathrm{c}}{12,10}, 58 \frac{\mathrm{D}}{19}$, arrears from the previous year, was completed and the sheets were submitted to the Superintendent.

The total area of fair mapping was 1,322 square miles and the cost-rate per square mile was Rs. $19 \cdot 2$.

The computations of the triangulation and traversing were completed under the supervision of Mr. Kennegy.

Triangulation charts 58 C, D are in hand.

EASTERN CIRCLE.

(Fide Index Maps 3 and 6.)
Summary.-The Circle was under the superintendence of LieutenantColonel ©. L. Robertson, C.M.G., R.E., up to the 23rd November 1914 and under Lieutenant-Colonel R. T. Crichton, C.I.E., I.A., from the 24th November 1914 up to the end of the Survey year.

An area of 5,056 square miles was surveyed consisting of :-

3,674	square miles of	l-inch survey.
223	ditto	l-inch supplementary survey.
372	ditto	l-inch revision survey.
531	ditto	2-inch survey.
225	ditto	2-inch skeleton survey.
31	ditto	4-inch surveg.

No. 9 PARTY (BENGAL). Вғ Mr. J. Smite.
The field programme of this party was considerably curtailed, involving the entire abandonment of detail survey and permitting only the execution of traversing in sheet 79 A .

Perboninel.

Imperial Officer.
Lieutenant-Colonel C. L. Robertson, C.M.G., R.E., in charge from 25th November 1914. till 22nd August 1915.

Provincial Officers.

Mr. J. Smith, in charge from 1st September 1015.

Dhani Ram Verma.
B. C. Newland, till 10th September 1915.
" L. B. Fitz-Gibbon, till 16th July $191 \overline{0}$.
"A Amar Krishna Mitia.
V. V. P. Wainright, till 18th June 1915.
„W. P. Males, till leth June 1915.
, Dhirendra Nath Banerjee, B.A., till 23rd September 1915.

Upper Subordinate Service.
Mr. Dalbir Rai.
"Ram Singh, till 18th May 1915.
Lower Subordinate Service.
24 Surveyors, etc.

For this work one camp was formed under Mr. Fitz-Gibbon with Mr. Banerjee,
2 Upper Subordinates and 1 surveyor working under him.

The rest of the party were employed on $\frac{1}{2}$-inch mapping at Sbillong.

The country traversed comprised parts of the Murshidābād, Burdwān and Nadiā districts falling in sheets $79 \frac{\Delta}{1,2,3,3,6,7, i 0,11,}$. $\frac{\Delta}{13,2 a \dot{1} 14}$.

Altogether 1,244 linear miles of traverse were completed and 2,814 intersected points ixed, principally isolated trees, temples and sigual posts on railway lines over an area of 2,870 square miles.

A training class in 1 -incl plane-table survey was started on the $2 n d$ January under Mr. Dhani Ram Verma and continued till the 8th May 1915. Three pupils from No. 12 Party and two from this party were given instruction in topography in the country round about Shillong and passed out well, with the exception of one man who was discharged.

The independent surveys executed by them compared very favourably with the topography as given on our 1 -inch published maps, and amounted in all to an area of 63_{4}^{3} square miles, averaging 4 square miles per man per month.

Half-inch mapping.-Excluding 3 sheets, $64 \frac{\mathrm{~N}}{\mathrm{~s} . \mathrm{E} .}, 73 \frac{\mathrm{~B}}{\mathrm{~s} . \mathrm{w} .}$, and $73 \frac{\mathrm{~F}}{\mathrm{~s} . \mathrm{w} .}$, which were drawn during the recess of 1913-14, the number of sheets allotted to this party was 15 .

I'liree sections were formed to deal with this:-
Section No. 1.-Under Mr. Dhani Ram Verma with 7 survesors had

Section No. 2.-Under Mr. B. C. Newland with 8 surveyors had the

Section No. 3.-Under Mr. A. K. Mitra with 8 surveyors had the

Two of the sheets started in 1913-14 have been sent in for publication and the third will shortly follow.

Of the sheets allot ted to the party for completion during the year 191 ± -15, six were started in January, two more were taken up in February, two more in March, three more in April and the last in May.

Three have been finally examined by the section officers and ard with the Officer in charge of the party for his examination before submission for publication, six are finished in drawing and are being finally examined by the section officers, and six are in hand in various stages of completion.

Owing to the many changes that have occurred in the personnel of the party, the examination has been greatly retarded.

The computations of the traversing done in the field season have been completed by Mr. Banerjee with Mr. Dalbir Rai and 3 computors working under him.

No. 10 PaRTY (UPPER BURMA).

Ey Majoil E. T. Pich, R.E.
The recess office of the party closed in Maymyo on October 17th 1914

Personnel.
Imperial Officer.
Major E. T. Rich, R.E., in charge.
Provincial Officers.
Mr. J. Smith to 30th November 191.s.
, W. G. Jarbo.
" H. B. Simons.
" V. W. Morton, to 13th June 1915.
,. Asmat-Ullah Khan, K.S., to 2th October 1914 and from lst June 1915.
, C. B. Seston, till 15th July 1910.
", A. ₹. Murphy.
Upper Subordinate Service.
Mr. Hajat Muhammad, K.S., to 2Sth February 1915, and from lst September 1915.
, Maung Kyaw Nyein.
", Dhirendra Nath Saha from 20th October 1914.
,. Ram Prasad promoted from the Lower Subordinate Service froni 1st July 1915.

Lower Subordinate Sorvice.
26 Surveyors, Draftsmen, etc.
and opened in Myitkyinā on October 28th, 1914.

The office at Myitkyinā was closed on May 31st 1915 and the recess oftice was opened in Maymyo on June 2nd 1915, where it remained for the rest of the year.

The country under survey lay in the Myitkyinā, Kathā and Putao districts of Upper Burma, nearly the whole area being covered with densely wooded hills and valleys, whilst great varieties in height were experienced, varying from 500 feet above sea level to nearly 14,000 feet above sea level.

The health of the party was not very good during the winter season, as there were numerous casos of malaria from which three khaläsis died.

Topography.-Surveys were completed over an area of 2,065 square miles at a cost of Rs. 76,879 in sheets $92 \frac{c}{12,16(\text { partit }}, 92 \frac{D}{1,2,6(\text { part }), 0}, 92 \underset{0,19(\text { part })}{a}$ and in parts of 6 frontier sheets.

This area was surveyed as follows:-
1,833 square miles of new 1 -inch survey.

178	ditto	2
57	ditto	1 ditto.

2,068 square miles.
The party was divided into three survey camps under Messrs. W. G. Jarbo, II. B. Simons, and V. W. Morton, respectively, whilst Mr. Maung Kyaw Nyein was in charge of a camp of instruction for 3 pupils and 4 soidier surveyors.

Survey camp crossing the Irrawaddy near Myitkyina, N. E. Frontier of Burma.
Reproduced from a photograph by Major E. T. Rich, R.E.

Camp No. 1.-In charge of Mr. W. G. Jarbo with 3 surveyors completed an area of 472 square miles on the 1 -inch scale along the frontier of which details are given in a separate report.

Camp No. 2.-In charge of Mr. H. B. Simons with one Provincial Officer, Mr. A. F. Murphy, two Upper Subordinates, Messrs. Hayat Mubammad, K.S., and D. N. Sala and 8 surreyors, completed an area of 975 square miles on the 1 -inch scale and 43 square miles on the 2 -inch scale in sheets $92 \frac{\mathrm{c}}{12}$, $\frac{\mathrm{D}}{0}, \frac{\mathrm{G}}{0}$ and parts of sheets $92 \frac{\mathrm{c}}{10}$ and $\frac{\mathrm{G}}{13}$.

This area consists of thickly wooded low-lying hills except in the parts adjacent to the railway line in the centre of sheet $92 \frac{\mathrm{c}}{12}$ and north-west corner of sheet $92 \frac{\mathrm{D}}{0}$ which are highly cultivated with populous villages.

Camp No. 3.--In charge of Mr. V. W. Morton with 7 surveyors completed an area of 578 square miles in sheets $92 \frac{\mathrm{D}}{1,2}$ and part of sheet $92 \frac{\mathrm{D}}{6}$ consisting of 386 square miles of new survey on the l-inch scale, 135 square miles of reserved forests on the 2 -inch scale and 57 square miles of 1 -inch revision survey over forests previously surveyed on the 4 -inch scale.

The country in this camp is low-lying and thickly wooded with very few inhabitants, the progress was, therefore, very slow as nearly all the work had to be done by chaining.

In addition to the above, Surveyor Shaikh Abdullah was seconded under the Burma Government from 1st October 1914 to 31st May 1915 and surveyed 600 square miles on the $\frac{1}{2}$-inch scale in the north of the Putao district in parts of sheets $91 \frac{\mathrm{H}}{8,11,12,10}$ and $92 \frac{\mathrm{E}}{9}$.

This area has been excluded from the detail survey area given for the party and also from the calculation of cost-rates as the surveyor was seconded from the party.

Triangulation. - New triangulation was completed orer an area of 3,320 square miles at a cost of Rs. 23,488, intcluding the computations.
(a) Mr. C. B. Sexton triangulated an area of 1,070 square miles in sheets $92 \frac{\mathrm{C}}{3,4,7, \boldsymbol{e}}$ of the Myitkyina district.
(b) Mr. Ram Prasad triangulated an area of 2,250 square miles in sheets $92-\underset{3,5,-, i, 8,10,11,12}{\mathrm{~F}}$ of the Putao district and in sheets $92 \underset{11,15,16}{\mathrm{~F}}$ and two sheets of unadministered territory.

Great credit is due to the arrangements made by Mr. Ram Prasad who was working under great difficultics, over seven days march from his base in Myitkyinā, whence all provisions, etc., had to be carried. He managel his orw arrangements entirely by himself.

The country triangulated ly both triangulators is of the same nature as last year consisting oit thickly wooded hills and deep valleys sparsely ir habited.

Traversing.-During the field season, Mr. H. B. Simons was in charge of all traversing and during the recess he superintended the traverse computations.

Four-inch theodolite boundary traverses were completed round the Maingusung, Nammun, Namma, Indawgyi, Nanyinka and Namaw reserred forests of the Myitkyinā district and the Nankolin reserved forest in the Upper Chindwin district in sheets $92 \frac{\mathrm{c}}{9,4,8,} \frac{\mathrm{n}}{5}$ totalling 164 linear miles.

The outturn was small owing to the dense jungle encountered evorywhere which made progress very slow.

The total cost of traversing and its computations amounts to Rs. 12,923 .
Recess $D_{u t i e s .-T h e ~ f a i r ~ m a p p i n g ~ w a s ~ d i v i d e d ~ i n t o ~ t w o ~ s e c t i o n s . ~}^{\text {ut }}$.
No. 1 Section.-In charge of Mr. W. G. Jarbo, assisted by Mr. A. F. Murphy and Mr. D. N. Saha, drew sheets $92 \frac{9}{0,13}$ and 5 frontier sheets, of which only one frontier sheet will be ready for publication before the party takes the field.

No. 2 Section.-In charge of Mr. Asmat-Ullah Khan, K.S., assisted by Mr. Maung Kyaw Nyein, drew sheets $92 \frac{\mathrm{c}}{12}, \frac{\mathrm{D}}{1.2,0}$ and 2 frontier sheets, of which all but one sheet will be sent for publication before the party takes the field.

The computations of the season's triangulation and traversing were completed during the recess in charge of Mr. H. B. Simons assisted by Mr. C. B. Seston, Mr. Ram Prasad, and one computer.

Outturn and cost-rates.-The cost-rates show a large increase all round except for triangulation and fair mapping which show a decrease.

This increase of cost-rates is entirely due to the personnel of the party during the field season having been made up of all the surveyors from Nos. 10 and 11 Parties who were poor draftsmen, whilst the good draftsmen, who were also in most instances the best surveyors, were left in Maymjo to do $\frac{1}{8}$-inch mapping.

This reduced the outturn by over fifty per cent. and as the total cost was very little changed, the cost-rates for detail survey are fifty per cent. higher than those of last year.

The cost-rate for 1 -inch survey is increased by Rs. $11 \cdot 18$ per square mile, being Rs. $33 \cdot 56$ per square mile.

For 2 -inch survey the cost-rate is increased by Rs. 29.09 per square mile, being Rs. 83.6 per square mile.

For triangulation the cost-rate is very satisfactory being reduced by Rs. 1.34 per square mile. It is Rs. 7.07 per square mile.

For 4 -inch boundary traverses the cost-rate is increased by ${ }^{\circ}$ Rs. 7666 per linear mile, being Rs. 78.79 per square mile.

For mapping the cost-rate is reduced by Re. 0.57 per square mile, being Rs. $6.9 \pm$ per square mile.

No. 11 Party (UPPER burma).

By Me. J. O. Gefiff.
In accordance with the general scheme of retrenchment, this party did not take the field for regular survey operations in the districts of Tavoy and Mergui, but was employed instead at recess quarters, Maymyo, on $\frac{1}{2}$-inch mapping.

Topography.-Two surveyors were employed in completing the revision survey, on the 1 -inch scale, of 315 square miles of country in sheets $93 \frac{\pi}{8}, 93 \frac{\mathrm{c}}{\delta, ~} \mathrm{~A}$. The country contained in these shetts and sheet $93 \frac{\mathrm{i}}{12}$ encircles the town of Maymyo, the town lying practically in the centre of the area. The sheets are in much demand both by the military and civil authorities.

To meet their requirements, their revision was started in the recess season of 1913-14 by No. 10 Party, and was taken over for completion by this party in the current field season. The 1 -inch revision has been completed, and there remain only the reserved forest areas, which come under special survey next field season.

The country surreyed comprised parts of the Maymyo plateau and adjoining high hills, rising to over 3,000 feet in elevation, densely wooded and sparsely populated. The revision survey was directly under the supervision of the executive officer.

Triangulation.-Mr. Lachman Daji Jadu, and Surveyor Muhammad Yusuf Khan carried out a little supplementary triangulation for the purpose of fixing additional points, for the special forest surveys to be taken up next year, and for the closing of theodolite traverses.

Traversing.-The boundaries of reserved forests Baw, Baw Extension, Zibingyi-Tonbo, Kywetnapha and Nyaundauk, totalling 195 linear miles, were traversed by chain and theodolite. The first two reserves are to be surveyed on tine special 4 -inch scale. The total cost of this survey will be borne by the Forest Department. Some revision traversing, and connections of traverses with triangulation data, were also carried out along the boundaries of the Taungbyo and Sakangyi reserves. The boundaries of these reserves, totalling 128 linear miles, had been traversed in the preceding recess season by No. 10 Party. The computations, for 323 linear miles of trarersing, and for the supplementary triangulation, were under the charge of Mr. A. M. Talati, who also supervised the preparation of the 4 -inch forest boundary plots, and the correction and compilation of topographical data for preliminary triangulation degree charts. Nine such charts have been dealt with during the year.

Mapping. -The Maymyo drawing office attached to No. 10 Party was transferred to this party from lst December 1914. The combined drawing staff of the party has been employed on $\frac{1}{3}$-inch and $\frac{1}{4}$-inch mapping.
 $92 \frac{\mathrm{D}}{\text { ®. } \mathrm{w} .}, 92 \underset{\mathrm{~s} . \mathrm{w},}{a}, 92 \underset{\mathrm{~s}, \mathrm{w}, \mathrm{s} . \mathrm{k} .}{\mathrm{L}}$, were allotted to the party for completion during the year. The first eight of these were completed and submitted for publication by the end of September, and the remaining four are well advanced. As the combined blue prints of the component 1 -inch sheets were not received till the end of December 1914, the $\frac{1}{2}$-inch mapping was not actually started till January 1915. In the interval, however, much practice work was done in the finer class of drawing needed for $\frac{1}{2}$-inch mapping. The mapping was distributed between three sections, under Messrs. AsmatUllah Khan, F. E. R. Calvert, and R. M. Wyatt.

Section I.-Was under Mr. Asmat-Ullah Khan until the 1st June 1915, when it was taken orer by Mr. A. J. Booth. It is responsible for the completion of $\frac{1}{2}$-iuch sheets $92 \frac{\mathrm{H}}{\mathrm{N} \cdot \mathrm{E} .}$ and $92 \frac{\mathrm{D}}{\mathrm{s}, \mathrm{w} .}$; also the compiling and mapping of degree sheets $84 \mathrm{~N}, 93 \mathrm{E}, 93 \mathrm{I}, 93 \mathrm{~J}$. These are in various stages of advancement. It is hoped to submit 8.1 N for publication before the close of the year.

Sections II and III.-Under Messrs. Calvert and Wyatt, completed the
 Calvert and Wyatt being appointed to the Indian Army Reserve of Officers, the two sections were combined, and placed under the supervision of

Mr. Lachman Daji Jadu, assisted by draftsman Radlha Krishna, who carried out almost all the preliminary examinations.

The total area mapped is 8,671 square miles which is very creditable, considering the staff was nem to this class of mapping, that is, drawing to a smaller scale from a larger. It was necessary to prepare detailed working plans for the draftsmen to follow. A large amount of compilation work mas necessary, to guide the draftsman as to how detail might be eliminated and generalized, to avoid overcrowding the resulting map and detracting from the character of topographical features. The $\frac{1}{2}$-inch scale is a difficult scale, coming as it does between the 1 -inch and the $\frac{1}{4}$-inch, the tendency being either to show too little or too much.

Cost-rates.-The high rate for traversing is due to heary clearing on the forest boundaries, which were not cleared by the Forest Department.

The revision survey was practically a new survey, as the old work was found to be very much out, and could not be accepted.

The high rate for $\frac{1}{2}$-inch mapping is due to slow progress at the start, and to no field work; the consequence of the latter being that the cost of the superrising staff has been debited almost entirely to mapping.

> No. 12 PaRTY (ASSAM). By Liettenant-Colonel a, Mears, I.a.

The party continued work in the Darrang, Sibsāgar and Nowgong

Pergonisel.
Imperial Officer.
Lieutenant-Colonel A. Mears, I.A., in charge.
Provincial Officers.
Mr. W. Skilling.
" Pramadaranjan Ray, R.S.
" E. M. Kerny.
, P. C. Mitra, B.A.
" H. H. Creed.
Cuper Sulordinate Service.
Mr. Nanak Chand Puri, B.A., till 2lst Mar 1915.

Lower Subordinate Service.
42 Surveyors, ete. districts, the area of operations extending from the Dafla Hills on the north to the Nāgā Hills on the south and included to the east the greater portion of the Tezpur and Golāghāt sub-divisions of districts Darrang and Sibsägar, situated in sheets $83_{\frac{1,5,0,7,8,10,11,12,14,15^{\circ}}{}}$ The programme was carried out on the 1 -inch scale except for the Mikir Hills, Kaliāni, Panbāri, Upper and Lower Daigurung, Nāmbar and Dayāng reserves, comprising an area of 332 square miles, which were surreyed on the 2 -inch scale. The special survey on the 2 -inch and 4 -inch scales of the Upper Dihing reserve, started a couple of seasons previously, was completed ; the work progressed well and the detail camp employed on this survey was arailable early in February for the ordinary topographical operations of the party.

The country uader survey was similar in most respects to that of past seasons.

The Mikir Hills which rise to an elevation of nearly 4,500 feet are densely wooded. The country to the south of these hills lying betwcen them and the Nägà Hills comprises what is known as the Nämbar Forest, a tract of almost primeval tree growth intermixed mith large areas of cane and swamp; cndearours are being made to open up this country by free grants of land to settlcrs but so far with little success. The ralley proper of the Brahmaputra, where not cultivatel, is covered for the most part with impenetrable "khagra" grass from 10 to 20 feet high. The field season started about the middle of

November aud finished early in May when the rains had already comenenced and the programme was completed with some difficulty. The health of the party was only fair, considerable numbers of men suffering from malaria and leech-bite ulcers, \pm khatēsis died in the field, 2 of the deaths being from cholera and smallpox. Two surveyors and a traverser died at their homes whilst on leave during the recess.

Topography.-The programme of detail survey was carried out by 4 camps and a training section under the charge of Messrs. Pramadaranjan Ray, Rai Sahib, E. M. Kenny, P. C. Mitra, H. H. Creed, and Surveyor Ghulam Haidar.

Mr. Pramadaraujan Ray with a camp of 10 surveyors and : pupils surveyed nearly 3 sheets, a considerable portion of the area being 2 -inch forest survey. Mr. E. M. Kenny with an establishment of 8 surveyors completed an area equivalent to $3 \frac{1}{4}$ sheets. To Mr. P. C. Mitra with a strength of 7 survey. ors was allotted the special 4 -inch and 2 -inch survey of the Upper Dihing reserve and the completion of one standard sheet.

Mr. H. H. Creed with 3 surveyors, and plane-tabling himself, surveyed $1 \frac{1}{4}$ sheets. The training section under Surveyor Ghulam Haidar with 5 soldier surveyors and one pupil completed one sheet. Nearly half the area surveyed was hilly and comprised the Mīkir Hills which rise from the plains level of 300 feet to close on 4,500 feet ; except where they have been " jhoomed" these hills are densely wooded and the slopes as a rule exceedingly steep. To the north of the Brahmaputra river tea is extensively grown and there are a considerable number of tea gardens along the foot of the northern and eastern slopes of the Mikir Hills. Good cold weather roads exist throughout the plains and the Assam Bengal Railway traverses the Nambar forest in the south-east of the area topographically surveyed.

In the Mīkir Hills communications may be said to be non-existent; the only path of any importance is along the Kalianni valley over which it was possible to take loaded elephants for a certain distance, elsewhere coolies are the only form of transport. Supplies and labour were obtained fairly easily on the whole ; in the Nambar forest surveyors' squads had to be strengthened owing to the heavy line clearing and paucity of villages. The party's outturn of detai 1 survey comprised 2,034 square miles on the 1 -inch scale, 353 square miles of reserved forests surveyed on the 2 -inch scale (this includes 21 square miles of special forest survey) and 31 square miles of special forcst survey on the 4 -inch scale. In view of the densely wooded and difficult nature of the major portion of the country these outturns may be considered satisfactory.

The survey cost-rates for the year compare favourably with those of the previous season, the slight increase in the l-inch rate is due to the country being less open and the small outturns given by the training section. The cost-rate for the 4 -inch special forest survey is very considerably lower than that for the previous year, this rate may be accepted as satisfactory for the nature of the country under survey.

Tricungulation.-A small area of about 300 square miles was triangulated in the Nägā Hills by Mr. V. P. Wainright in order to fix sufficient points for the 1-inch topographical survey of the hilly portions of sheets $83 \frac{3}{3,6}$. The work was based on the Assam Longitudinal and Näga Hills series but could not be closed on any principal station on account of the impossibility of clearing rays to the low-lying river stations of the first named series; this omission
will be rectified when the survey of the remainder of the Nāga Hills is carried out. The work was completed early in January and beyond entailing very heavy clearing for stations calls for no special comment. The triangulation. cost-rate may be considered normal for densely wooded country and is slightly lower than the rate for season 1912-13.

Traversing.-An area of some $2, \mathbf{1} 00$ square miles was traversed in advance for 1 and 2 -inch detail survey. In the open plains, already surveyed cadastrally, the work was entirely confined to obtaining sufficient heights for the topographical survey of this area. In the reserved forests and wooded country traverses had to be run considerably closer together and entailed very heavy line clearing. A total of 858 linear miles of traversing was carried out during the season which includes the traversing of artificial forest boundaries. Selected stations such as mile stones, bench marks, masonry bridges to the number of 366 were permanently marked and in addition 590 zinc cylinders were embedded. The country traversed differs little from that surveyed in detail.

The cost-rate for traverse survey is less than half that for the previous season and may be accepted as normal for the wooded and high grass covered plains of Assam.

Recess duties.-The fair mapping of the season's detail survey, consisting of nine and a half 1-inch sheets was distributed between 3 drawing sections under the supervision of Messrs P. Ray, Rai Sahib (3 sheets), E. M. Kenny ($3 \frac{1}{2}$ sheets), P. C. Mitra (3 sleeets) ; areas surveyed by these assistants in the field being, as far as possible, allotted them to fair-map. The work has progressed very satisfactorily, sheets $83 \frac{\mathrm{~F}}{1,2,0,11}$ were subuitted for publication before the close of the survey year and the remaining sheets will be completed before the party moves into the field. In addition to the above the following sheets have been submitted for publication during the year under report, $83 \frac{11}{10,11,1,16}, 83_{\frac{5}{2,3,8}}$ which make a total of eleven 1 -inch sheets for the year. The fair mapping cost-rate amounts to R.s. 8.6 per square mile which is practically the same as that for the preceding year. 'The triangulation and traverse computations of the season hare been completed, the work proving satisfactory.

andamans detachment.

By Libutenant-Coloyel I. T. Chichton, C.I.E., I.A.
The Andamans Detachment was composed of one assistant as officer in

Perbonnkl.
Provincial Officer.
Mr. E. Claudius in charge.
Lower Subordinate Service.
8 Surveyors.
charge, cight surveyors, seventy-one khalēsis, and over two hundred convict labourers.

The number of linear miles of theodolite traversing done was 93 , this was computed, plotted, and used as data for surveying the island of Baratang which falls in shects $86 \frac{\mathrm{D}}{\mathrm{i5}, 16}$.

The total area surveyed on the 2 -inch scale (skeleton survey with ridges) 1s 225 square miles, embracing part of Middle and South Andamans, in sheets 80 \% $16.15,10^{\circ}$

Nature of the country is lilly, and very densely wooded, the low lands cousisting principally of mangrove swamps. The tracts under survey are uninhabited except the island of Baratang which is frequented by hostile Audamauese called Jarawas, who move about in a state of nudity, armed with bows
and arrows. One surveyor's camp was attacked at dawn on the 25th November 1914 by a party of about fitteen, who wounded the sepoy on guard so severely that he took five months to recover and then had to be sent away on leave.

There is very little fresh water, and the climate is so enervating that a strong man feels exhausted, after only walking a mile or so, even along a cut line; also the whole place is infested with vermin. There was great difficulty in allocating rations on account of the rough sea. Having to work with convict coolies also gave a lot of trouble. Generally, the difficulties were of an exceptional nature and very heavy.

Recess duties.-The field sections were completed on return to recess quarters in Shillong. All field work was then sent to the Officer in charge Forest Map Office for the preparation by him of the maps for publication, and the detachment was then broken up; the members, not ou leare, being transferred to the different parties of the Circle.

TABLE I.
OUTTURNS OF DETAIL SURVEY.

TABLE I-conchuded.
OUTTURNS OF DETAIL SURVEY-concluded.

Scale.	Class of Burvey.	Circle.	Party.	Locality,	Ofitos,		AFELAGE NOMEIE OT fininge pri bquata мILE.	
					Total вquare miles.		In sita (by ro section).	$\begin{gathered} \text { Plane. } \\ \text { table } \\ \text { televerge. } \end{gathered}$
1-inch	Supplementary Survey.	S	Nọ 7	Madras . .	134	$51 \cdot 7$	$5 \cdot 0$	
		E	No. 12	Assam . .	223	18.9	-.	13
$1 \frac{1}{8}$-inch	Survey - :	8	No. 8	Madras .	508	8.5	$\pm .8$	37.2
2-inoh	Survey . .	s	No. 5	Berār .	8	$7 \cdot 6$	$32 \cdot 2$	$32 \cdot 5$
		S	No. 6	Do. . . .	22	$5 \cdot 6$	62.0	..'
		S	No. 7	Madras and Mysore .	439	7.0	$19 \cdot 6$	
		E	No. 10	Upper Burma . .	178	5.9	15	46
		E	No. 12	Assam	332	$7 \cdot 9$	3	62
2-inch	Survey (special forest.)	E	No. 12	Do. .	21	$7 \cdot 9$.."	70
2-inch	Skeleton Survey (uncontoured.)	E	Andamana detach-	Andaman Islands	225	75	. ${ }^{\prime}$	69
4-inch	Survey (special forest.)	E	$\text { No. } 12$	Absam	31	2.0	...	265
16-inch	Survey .	N	No. 20	Sahāranpur Remount Depòt and Hapur (Bäbugarh) Re. mount Depit Cantonments.	9•22	$1 \cdot 53$	-	
16-inch	He-survey	N	No. 20	Meerut, Dehra Dun and Landour Cantonments.	$20 \cdot 87$	0.80		
64-inch	Survey .	N	No. 20	Dehra Dūn Cantonment.	$0 \cdot 01$	0.01		
64-inch	Re-survey	N	No. 20	Meerat Cantonment	$0 \cdot 49$	$0 \cdot 10$		
4-inch	Survey . .	N	Simla Survey detaohment.	Koti State Forest (Simla.)	$\begin{gathered} \text { acres. } \\ 5,120.0 \end{gathered}$	$\begin{gathered} \text { acres. } \\ 1,4720 \end{gathered}$	0.2	
8-inch	Sarvey .	N	Do.	Simla	654:0	$109 \cdot 0$...	$3 \cdot 4$
16-inch	Survey .	N	Do.	Do. . .	$831 \% 0$	295.0	1.0	
20 feet to 1 inch.	Survey .	N	Do.	Bazear Blocks (Simla)	32.0	$6 \cdot 4$	**	$61 \cdot 0$
328 feet to 1 inch.	Supplementary Survey.	N	Do.	Simla . .	2,700:0	32.0	\cdots	$5 \cdot 0$

table II.
DETAILS OF TRIANGULATION AND TRAVERSING.

TABLE II-conctuded.
DETAILS OF TRIANGULATION AND TRAVERSING-concluded.

table iní.
COST-RATES OF SURVEY.

COST-hates of survey -ooncluded.

PART II.-GEODETIC AND SCIENTIFIC OPERATIONS.

ASTRONOMICAL LATITUDES.

No. 13 PARTY.

Pbrgonnil.

Imperial Officers.
Captain V. R. Cotter, I.A., in charge, to 20th November 1914.
Frorn 27th November 1914 the Superintendent of the Trigonometrical Survey held charge in addition to his other duties.

Lower Subordinate Service.
3 Computers, etc

As no officer was available no latitude operations were undertaken, and the personuel of the party was employed at, the Head-quarters offices.

PENDULUM OPERATIONS.

No. 14 PARTY.

Pergonnel.

Imperial Officers.

Major A. A. Mclfarg, R.E., in charge to 6th October 1914.
Captain G. F. T'. Oakes, R.E., attaohed from 1st to 6th Ootober, in charge 7th to 20th October 1914.
Charge held by the Superintendent of the Trigonometrical Surver from 21st October to 2nd Norember 1914.
Major H. M. Cowie, R.E., in charge, 3rd to 16th November 1914.
From 17th November 1914 to 10th September 1915. charge was held by the Officer in charge No. 15 Parls, and from llth to 30 th September $191{ }^{\circ}$ by the Superintendent of the Trignometrical Survey in addition to their other duties.

Upper Subordinate Sorvice.
Mr. S. C. Mukharji.

Lower Subordinate Service.

3 Computers and 1 Traverser.

As no officer was available no pendulum work was undertaken. A detachment made up in part from the personnel of the party took part in the revision of the boundary between Nepāl and Pilibhit district.

This work is described on page 173.

TRIANGULATION.

No. 15 PARTY.
(${ }^{\text {ide }}$ Index Map No. 14.)
By J. de Gbalff Hunter, M.a.
During the cold weather of 1914-15 the field work was carried out at first by two detachments as follows :-

Prigoninel.

Imperial Officers.
Major E. A. Tandy, R.E., in charge till 10th September 1915.
J. de Graall Hunter, Esq., M.A., in charge from 11th September 1915.

Provincial Officers.
Mr. L. Williams.
, G. A. Norman.
" B. T. Wyatt.
" A. J. Moore to 24 th September 1015.
Lower Subordinate Service.
19 Computers, etc.
(1) Mr. L. Williams; the Ashta Series and afterwards, the Middle Godāvari Series;
(2) Messrs. G. A. Norman, B. T. Wyatt and A. J. Moore, the Cächär Series, the Kohāmā Series.
A third detachment with Mr . B. T. Wyatt in charge was formed at the end of December 1914, to commence the reconnaissance of the Chittagong Principal Series.

Note.-Mf. B. T. Wyatt was transferred to tho Basrah Survey Party on Ist September 1915.

Particulars of triangulation outturn duving the year.

Phinctpal Triangulation.

The Chittagong Series.--The: Sambalpur Principal Series having been completed last year it was decidel to postpone further principal triangulation until eifter the war. It was found, however, that one officer would only be required for a short period to assist in the secondary series in Assam and accordingly Mr. Wyatt was directed at the end of December 1914 to undertake the reconnaissance and building of the Chittagong Series, a new principal series which is to connect the Burma Coast Series with the Manipur Meridional Spries and which will form an important link in the Burma Triangulation.

This series was reconnoitred and built from a base on the Burma Coast Series about 30 miles east-north-east of Chittagong, along a line keeping near the main road to Lungleh in the Lushai Hills and thence due eastwards almost up to a base on the Manipur Meridional Series, east of Falam and Haka in the Chin Hills. The series has been very satisfactorily laid out and forms a connexion across about 115 miles of difficult country by means of five strong figures, all giving double values. 'The final connexion with the Manipur Meridional Series was not quite completed owing to unfavourable weather and it is probably that connexion will have to be made with the eastern side of the Manipur Meridional by means of an extra quadrilateral. This matter which will involve the building of one additional station can easily be settled when observing work is commenced from the Burma ond.

The 10 new statious bringing the series to this incomplete junction have all been built and very full notes have been recorded for the assistance of the principal detachment which will ultimately undertake the observations of the series.

Owing to a number of the mark-stones of the Burma Coast Series having been destroyed, the whole hexagon of the Burma Coast Serics at the western end of the work will probably have to be reobserved.

The series extends from the plain and undulating country in Chittagong through successive parallel ranges of hills in the Chittagong Hill Tracts, South Lushai Hills and the Chin Hills. These ranges, which have a general direction of north to south, are separated by narrow valleys and increase in elevation towards the east where several peaks exceed 7,000 and 8,000 feet. The country for the most part is covered with dense jungle. Mule transport would be most suitable for the country and could be arranged for in consultation with the Burma topographical parties.

Secondary Triangulation.

The Ashta Series.—Only 8 stations of this series remained to be observed at to effect a connexion with the Karāchi Lougitudinal Series, the entire building and three-fourtbs of the observations having been completed during the previous season. The work was completed by the middle of December and a satisfactory connexion made,--vide table of outturn.

The detachment was then transferred to the Hyderäbad State, Nizam's Dominions, to take up the observations of the statious of the Middle Godavari Series which had been laid out aud built in season 1911-12 under the name of the Bhir Scries. The scries councets the Great Arc and the Jabalpur Meridionai Series and consists of 18 stations lying along the line of the Godavari river. The observations were completed by about the middle of March and the
connexion proved very satisfactory. About 30 intersected points were fixed for the use of topographical parties.

The Cächär Series.-Tbis series connecting the Assam Valley Series and the Cächär Branch of the Eastern Frontier Series was undertaken with a view to clearing up the doubts raised by the large closing differences of the Nägà Hills Series completed during the previous season.

The reconnaissance and building of the series, which consists of 15 stations, was taken up early in November by Messrs. Norman and W Satt and completed by the end of December. The former then took up the observations but was much delayed by unfarourable weather conditions and the great length of some of the sides. The final connexion with the Assam Valley Series was not completed and three stations remain to be observed at to complete the connexion. The country worked over was of a difficult nature and clad with dense jungle. Coolies and supplies were scarce and communications difficult.

The Kohimā Series.-This series, which forms a connexion between the Nāgā Hills and the Cāchār and Jaintià Hills Series and is a continuation of the last-named series, was taken up last year during which the series was laid out and the first 6 stations observed. Mr. Moore was directed to carry on the observations and establish the connexion. On accomplishing this, he went to Mr. Norman's assistance on the Cāchär Series, but the season was far advanced and haze and unfavourable weather rendered further progress impossible. The detachment was finally recalled without being able to complete the Cāchär Series.

TIDAL OPERATIONS.

No. 16 PARTY.
(Vide Index Map No. 14.)
By Me. Syed aurad Hogsin, K.B.

Pergonnel.

Provincial Officers.
Mi. Syed Aulad Hossein, K.B., in charge till 13th December 1914 and again from lat March 1915 to ond of the year.
Mr. Syed Zillo Hasnain, in charge from 14th December 1014 to 28th February 1915.
Mr. D. H. Luxa, from 22nd December 1914 to $28 t h$ February 1915.

Lower Subordinate Service.
1 Clerk.
15 Computers.
2 Tidal Observatory olerks.
2 Artificers.

During the year under report, registrations of the tides by self-registering tidegauges were carried out at the ports of Aden, Karāchi, Apollo Bandar (Bombay), Prince's Dock (Bombay), Madras, Kidderpore, Rangoon, Moulmein, and Port Blair.
These operations were conducted under the direction of this Department : the immediate control of all the tidal observatories being entrusted to the local officers of the ports concerned.

In addition to the above work, the predictions of high and low water for 1914 at Bhaunagar, Akyab and Chittagong, where regular tidal registrations by self-registering tide-gauges were discontinued some years ago, were compared against actual readings of high and low water supplied by the Port Officers concerned. These readings were taken during daylight on tide-poles at Bhaunagar and Akyab throughout the year and at Chittagong from June to December 1914. From 1st January to end of May 1914 the actual record of high and low water at Chittagong was obtained from the diagrams of a small self-registering river-gauge supplied by the Port Officer. It was subsequently found that the record of these diagrams was not wholly satisfactory, and hence they were discontinued after May 1914. The object of the above comparisons was to see whether the predictions which were based on observations taken some years ago still maintained the required degree of accuracy.

List of Tidal Stations.

The following is a complete list of the ports at which tidal observations have been carried out from the commencement of the tidal operations in 1874 up to the present time. The permanent stations are shown in italics; the others are minor stations which were closed on the completion of the requisite registrations.

$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$	Statione,	Automatic or personnl obsorrations,	\qquad	Date of closing of observations.	$\begin{gathered} \text { Number } \\ \text { ol } \\ \text { years of } \\ \text { oberrations. } \end{gathered}$	Remaris,
1	Suez	Automatic	1897	1903	7	
2	Perim .	Dilto	1898	1902	5	
3	Aden	Ditto	1879	Still working	36	
4	Maskat	Ditto	1893	1895	5	
5	Busbire .	Ditto	1892	1901	8	
6	Karāchi	Ditto	$\left\{\begin{array}{l}1868 \\ 1881\end{array}\right.$	1880 Still working	$\left.\begin{array}{c} 13 \\ 35 \end{array}\right\} .48$	- Small tide-gauge morking.
7	Hanstal .	Ditto	187.1	1875	1	Tide-tables not published.

$\begin{aligned} & \text { Eerial } \\ & \text { No. } \end{aligned}$	sitatione,	$\begin{gathered} \Delta u t o m a t i c \\ \text { or } \\ \text { peronal } \\ \text { obrervailoog. } \end{gathered}$	\qquad	Date of closing of observatione.	Namber of years of observationy.	nexame,
8	Navãdar . .	Automatic	1874	1875	1	Tide-tables not published.
-			1874	1875		Year 1904-05 is ex.
9	Okha Point :	Ditto	Restarted 1904	1906	$1\} 2$	cluded.
10	Porbandar . .	Personal	1893	1894	2	
10A	Porbandar .	Automatio	1898	1902	2	Years 1898, 1899 and 1802 are excluded.
11	Port Albert Victor (Käthiswar).	Personal	1881	1882	1	
11 A	Port Albert Viotor (Käthianwârl).	Automatic	1900	1903	4	
12	Bhaunagar . .	Ditto	1889	1894	5	
13	Bombay (Apollo Bandar).	Ditto	1878	Still working	37	
14	Bombay (Porince's Dock).	Ditto	1888	Ditto	27	
15	Marmagao (Goa) .	Ditto	1884	1889	5	
16	Kârwār . . .	Ditto	1878	1883	5	
17	Beypore . .	Ditto	1878	1884	6	
18	Cochin .	Ditto	1886	1892	6	
19	Tuticorin .	Ditto	1888	1893	5	
20	Minicoy . .	Ditto	1891	1896	-	
21	Galle -	Ditto	1884	1890	6	
22	Colombo , .	Ditto	1884.	1890	6	
23	Trincomalee . .	Ditto	1890	1896	6^{1}	
24	Pāmban Pass . .	Ditto	1878	1882	4	
25	Negapatam . .	Ditto	1881	1898	5	Years 1883 to 1885 are excluded.
26	Madras . .	Ditto	$\begin{gathered} 1880 \\ \text { Restarted } \\ 1895 \end{gathered}$	1890 Still working	$\left.\begin{array}{l} 10 \\ 20 \end{array}\right\} 30$	
27	Cocanāda .	Ditto	1886	1891	5	
28	Vizagrpatam . .	Ditto	1879	1885	6	
29	False Poiot	Ditto	1881	1885	4	
30	Dublat (Sāgar Island)	Ditto	1881	1886	5	
31	Diamond Harbour	Ditto	1881	1880	5	
32	Kidderpore .	Ditto	1881	Still working	34	
93	Chiltagong . .	Ditto	1886	1801	5	
34	Akyab . . .	Ditto	1887	1892	5	
35	Diamond Islind	Ditto	1895	1883	5	
36	Basxein (Burma)	Ditto	1902	1903	2	
37	Elephant Point	Dit!o	$\begin{gathered} 1880 \\ \text { Restarted } \\ 1884 \end{gathered}$	1881 1888	\} 5	Year 1880-81 is ercluded.
38	Rangoon . .	Ditto	1880	Still working	35	
39	Amherst	Ditto	1880	1886	6	
40	Noulmein	Ditto	$\begin{gathered} 1880 \\ \text { Restarted } \\ 1009 \end{gathered}$	1886 Still working	$\left.{ }_{6}^{6}\right\} 12$	
41	Mergai . . .	Ditto	1889	1894	5	
42	Port Blair . .	Ditto	1880	Still working	35	

Wouking of the Obgervatories.

The inspection of the tidal observatories at Bombay (Apollo Bandar and Prince's Dock), Madras, Kidderpore, Rangoon, Moulmein and Port Blair was carried out by Mr. Syed Zille Hasnain. Mr. Luxa who was temporarily posted to this party, during Mr. Syed Aulad Hossein's absence on leave, went through the various details of the inspection at the two observatories at Bombay with Mr. Syed Zille Hasnain. Subsequently he inspected the tidal observatories at Aden and Karächi by himself.

During the inspection of each observatory all the instruments were thoroughly overhauled, cleaned and put in working order. The relative levels of the bed-plate of the tide-gauge and the bench-mark of reference were tested by means of spirit levelling operations and the working zero of the tide-gauge was compared with the true or adopted zero. All the other details of the inspection including the examination of the observatory cabin and the communication between the sea and the observatory well were minutely gone through and the instruments were left in perfect adjustment and working order.

The following remarks regarding the working of each observatory may be added :-

Aden.-During the past year there were 12 interruptions of a few hours each in the registrations of the tide-gauge chiefly owing to the stoppage of the driving clock. Most of these interruptions occurred during the rainy season when the sea was generally rough.

Karächi.-The tide-gauge at this observatory worked well throughout the year. The communication between the sea and the observatory well was partially blocked for short intervals more than once, the cause apparently being some obstacle, like a shell-fish, temporarily sticking in the inlet hole and then passing out by itself.

Bombay (Apollo Bandar).-There have been no interruptions in the registrations of the tide-gauge, and the whole work connected with this observatory has been satistactorily carried out.

Bombay (Prince's Dock).-Since the last report on this observatory, the working of the tide-gauge showed considerable improvement in the earlier part of the year, but later on the tidal registrations began to be interrupted owing to the stoppage of the driving clock or the breaking of the pencil wire. During July and August last such interruptious were unusually frequent. The matter was brought to the notice of the Chief Engineer of the port who had tho tidegauge and the driving clock examined by one of his own mechanics. Since then no further breaks in the registrations of the tide-gauge have occurred.

Madras.-The tide-gauge at this obserratory has worked most satisfactorily during the year under report.

Kidderpore.-The tidal registrations at this olservatory have been continuous and satisfactory. In the course of the last anmual inspection of the observatory it was found that there was nearly four inches of mud inside the float cylinder and that the periodical cleaning of the mud by means of a fireengine from the vicinity of the observatory was not satisfactorily carried out. All that the engine appeared to have done was to clear a path on the uorth side of the observatory for the passage of the water to the cylinder, but mud was allowed to accumulate round the cylinder on the other sides. The matter was at once reported to the Deputy Conservator of the Port who was requested to
have dredging operations carried out all round the observatory to ensure that there was always two or three feet of water below the bottom of the cylinder. Unless this was done at short intervals there was a danger of the communication betreen the river and the cylinder being blocked or at least retarded at any time.

Rangoon.--The Inspecting Officer noticed last year that the bottom piece of the iron cylinder of this observatory was showing signs of wear and tear and that the silt in the river was frequently collecting round the bottom of the cylinder and partially blocking the inlet holes. It was, therefore, decided to have the bottom piece of the cylinder renewed and, at the same time, to have the total le ngth of the cylinder reduced to a certain extent, in order to have as much clearance as possible between the bottom of the cylinder and the riverbed. The length of the cylinder could be safely reduced by four feet from the bottom, after allowing for a sufficient play for the float at the lowest low tide. The Deputy Conservator of the Port was accordingly requested to have a new bottom-piece of the oylinder prepared four feet shorter than the old piece which was nearly eight feet in length. On arrival at Rangoon in February 1915 the Inspecting Officer found that the new piece of the cylinder was ready. He had. the old piece removed and the new piece fixed in its place. The reduction in the length of the cylinder has had the desired effect, as since then no complaints have reached this office of the silt in the river coming up to the bottom of the cylinder and interfering with the communication between the river and the tide-gauge which has worked smoothly.

Moulmein.-With the exception of a few minor interruptions in the registrations due to the stoppage of the driving clock, the tide-gauge has worked well during the year.

Por't Blair.-During the year 1914 the Chief Commissioner of Port Blair mrote to the Superintendent of the Trigonometrical Survey that it was desirable for local requirements to shift the tidal observatory to a new site about 90 feet tomards the south. This site lad aiready been inspected and approved of by the Inspecting Officer when he risited Port Blair in January 1914. The Superintendent of the Trigonometrical Survey having consented to the above proposal, the building of the new observatory was taken in hand by the Chief Commissioner and was finished by the eud of February 1915, when the Inspecting Officer next visited Port Blair. On 1st March 1915 the tide-gauge and other instruments were removed from the old to the new observatory where tidal registrations hare been carried out most satisfactorily up to the present time.

The new observatory is made of reinforced cement with rooden flooring and roof and is in every way much better than the old building.

Compttations and Reduction of Obsertations.

All the computations pertaining to past year's work have been completed and there are no arrears. The tidal observations at the nine working stations for the year 1914 have been reduced by harmonic analysis and the values for the tidal constants thus determined are shown in the attached tables.

These tables gire the amplitudes (R) and the epocls (ζ) at the various stations; they also give the ralues of H and K which are connected with R and ζ in such a way, through the various astronomical quantities involved in the position of the sun and moon, that if the tidal observations were consistent from sear to year H and K would come out the same from each year's reductions.

Aden, 1914.

Short Period Tides.

Long Period Tides.

Karaioti, 1914.
Short Period Tides.
$A_{0}=7 \cdot 318$ feet.

	$\mathrm{M}_{\mathrm{f}}\left\{\begin{array}{rrr}\mathrm{R}= & \cdot 041 \\ \zeta= & 155^{\circ} \cdot 51 \\ \mathrm{H}= & 046 \\ \kappa= & 206^{\circ} 003\end{array}\right.$	$\mathbf{Q}_{1}\left\{\begin{array}{rlr}\mathrm{R}= & \cdot 183 \\ \zeta= & 137^{\circ} \cdot 55 \\ \mathrm{H}= & \cdot 156 \\ \kappa= & 52^{\circ \cdot 30}\end{array}\right.$	$\mathrm{T}_{2}\left\{\begin{array}{rrr} \mathrm{R}= & \cdot 109 \\ \zeta= & 3^{0} \cdot 03 \\ \mathrm{H}= & 109 \\ \kappa= & 4^{\circ} \cdot 38 \end{array}\right.$
$\begin{aligned} & S_{4}\left\{\begin{array}{lr} H=R=r & 011 \\ \kappa=\zeta= & 349^{\circ} \cdot 51 \end{array}\right. \\ & S_{G}\left\{\begin{aligned} & H=R= 010 \\ & \kappa=\zeta=3010^{\circ} 26 \end{aligned}\right. \end{aligned}$	$\mathrm{M}_{8}\left\{\begin{array}{rrr} \mathrm{R}= & \cdot 002 \\ \zeta= & 385^{\circ} \cdot .56 \\ \mathrm{H}= & 002 \\ \kappa= & 28 \cdot{ }^{00} \cdot 22 \end{array}\right.$	$\mathbf{L}_{2}\left\{\begin{array}{rrr} \mathrm{R}= & \cdot 051 \\ \zeta= & 91^{0.24} \\ \mathrm{H}= & \cdot 070 \\ \kappa= & 294^{\circ} \cdot 20 \end{array}\right.$	$(\mathrm{MS})_{4}\left\{\begin{array}{r\|r}\mathbf{R}= & \cdot 041 \\ \zeta= & 57^{\circ} \cdot 12 \\ H= & 043 \\ \kappa= & 313^{\circ} \cdot 96\end{array}\right.$
	$\mathrm{O}_{1}\left\{\begin{array}{rr} \mathrm{R}= & \cdot 746 \\ \zeta= & 344^{\circ} \cdot 27 \\ \mathrm{H}= & 670 \\ \kappa= & 47^{\circ} .06 \end{array}\right.$	$\mathrm{N}_{2}\left\{\begin{array}{rr} \mathrm{R}= & 6630 \\ \zeta= & 170^{\circ} \cdot 29 \\ \mathrm{H}= & 653 \\ \kappa= & 279^{\circ} .08 \end{array}\right.$	$(2 \mathrm{SM})_{9}\left\{\begin{array}{rrr} \mathrm{R}= & \cdot 014 \\ \zeta= & 353^{\circ} \cdot 93 \\ \mathrm{H}= & \cdot 015 \\ \kappa= & 97^{\circ} \cdot 09 \end{array}\right.$
$\mathrm{M}_{1}\left\{\begin{array}{rrr} \mathrm{R}=: & 058 \\ \zeta= & 48^{\circ} \cdot 50 \\ \mathrm{H}= & 0027 \\ \kappa= & 101^{0.49} \end{array}\right.$	$\mathrm{K}_{1}\left\{\begin{array}{rr} \mathrm{R}= & 1 \cdot 465 \\ \zeta= & 212^{\circ} .67 \\ \mathrm{H}= & 1 \cdot 324 \\ \kappa= & 45^{\circ} .57 \end{array}\right.$	$\lambda_{2} \begin{cases}\mathrm{R}= & \cdots \\ \zeta= & \cdots \\ \mathrm{H}= & \cdots \\ \kappa= & \cdots\end{cases}$	$2 \mathrm{~N}_{2}\left\{\begin{array}{r\|r} \mathrm{R}= & 076 \\ \zeta= & 276^{\circ} \cdot 96 \\ \mathrm{H}= & 079 \\ \kappa= & 237^{\circ} .70 \end{array}\right.$
$\mathbf{M}_{2}\left\{\begin{array}{lr} \mathrm{R}= & 2.508 \\ \zeta= & 36^{\circ} 62 \\ \mathrm{H}= & 2592 \\ \kappa= & 208^{\circ} .46 \end{array}\right.$	$\mathrm{K}_{2}\left\{\begin{array}{lr}\mathrm{R}= & \cdot 345 \\ \zeta= & 112^{\circ} 093 \\ \mathrm{H}= & 2666 \\ \kappa= & 319^{\circ} 05\end{array}\right.$	$\nu_{2}\left\{\begin{array}{rr} \mathrm{R}= & \cdot 195 \\ \zeta= & 321 \cdot 60 \\ \mathrm{H}= & \cdot 202 \\ \kappa= & 262^{\circ} \cdot 55 \end{array}\right.$	$\left(\mathrm{M}_{2} \mathrm{~N}\right)_{1}\left\{\begin{array}{r\|r}\mathrm{R}= & 0019 \\ \zeta= & 345^{\circ} 51 \\ \mathrm{H}= & 021 \\ \kappa= & 351^{\circ} 14\end{array}\right.$
$\mathbf{M}_{3}\left\{\begin{array}{r\|r} \mathrm{R}= & 0+5 \\ \zeta= & 114^{\circ} 10 \\ \mathrm{HI}= & 0.0 .8 \\ \kappa=1.319^{\circ}+5 \end{array}\right.$	$\mathrm{P}_{1}\left\{\begin{array}{lr}\mathrm{R}= & \cdot+14 \\ \zeta= & 234^{\circ} .64 \\ \mathrm{H}= & 4.14 \\ \kappa= & 44^{\circ} \cdot 53\end{array}\right.$	$\mu_{2}\left\{\begin{array}{rrr}\mathrm{R}= & .083 \\ \zeta= & 102^{\circ} \cdot 54 \\ \mathrm{H}= & .089 \\ \kappa= & 2.5 \mathrm{~h}^{0.22}\end{array}\right.$	$\left(\mathrm{M}_{2} \mathrm{~K}_{1}\right)_{8}\left\{\begin{array}{r\|r}\mathrm{R}= & \cdot 002 \\ \zeta= & 278^{\circ} \cdot 53 \\ \mathrm{H}= & .002 \\ \kappa= & 8^{0.27}\end{array}\right.$
$M_{4}\left\{\begin{array}{r\|r} R= & 0.014 \\ \zeta= & 177^{\circ} 8: 3 \\ H= & 015 \\ \kappa=3: 31^{\circ} 51 \end{array}\right.$	$J_{\mathbf{1}}\left\{\begin{array}{rr} R= & 064 \\ \zeta= & 62^{\circ} \cdot 47 \\ \mathrm{H}= & 055 \\ \kappa= & 44^{\circ} \cdot 57 \end{array}\right.$	$\mathrm{R}_{2}\left\{\begin{array}{c\|c} \mathrm{R}= & \ldots \\ \zeta= & \cdots \\ \mathrm{H}= & \cdots \\ \kappa= & \cdots \end{array}\right.$	

Long Period Tines.

				R	ζ	H	κ
Luear Monthly	Tide	$\cdot 039$	$188^{\circ} \cdot 29$. 044	$316^{\circ} \cdot 34$
" Fortnightly	"	\ldots	\cdots	$\cdot 047$	97'76	$\cdot 0.33$	$49^{\circ} \cdot 01$
Luni-Solar ,"	"	\cdots	\cdots	-(1)1)	$233{ }^{\circ} 96$	-031	$33^{\circ} \cdot 12$
Solar-Annual	"	\ldots	\ldots	$\cdot 155$	2240.69	$\cdot 155$	$144^{\circ} \cdot 80$
" Somi-A naual	"	...	\ldots	$\cdot 195$	$299^{\circ} 71$	$\cdot 195$	$139^{\circ} \cdot 96$

Bombay (Afollo Bandar), 1914.
Short Period Tides.

Long Period Tides.

| | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Bombay (Prinoe's Dock), 1914.

Short Period Tides.

Long Period Tides.

| | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Madras, 1914.

Short Period Tides.
$A_{0}=2.213 \mathrm{fe} \mathrm{\theta t}$.

Long Period Tides.

Kiddrrpore, 1914.

Shart Period Tides.

Long Period Tides.

Rangoon, 1914.
Short Period Tides.
$\Delta_{0}=10 \cdot 208$ feet.

$M_{\theta}\left\{\begin{array}{l} R= \\ \zeta= \\ H= \\ \boldsymbol{H}= \end{array}\right.$	$\begin{array}{r} \cdot 228 \\ 25^{\circ} \cdot 17 \\ \cdot 253 \\ S 1^{0.62} \end{array}$	$\mathbf{Q}_{1}\left\{\begin{array}{l} R= \\ \zeta= \\ H= \\ \boldsymbol{H}= \end{array}\right.$	$\begin{array}{r} 015 \\ 154^{\circ} \cdot 98 \\ 0013 \\ 72^{\circ} .85 \end{array}$	$\mathrm{T}_{\chi}\left\{\begin{array}{l}\mathrm{R}= \\ \zeta= \\ \mathrm{H}= \\ \boldsymbol{c}=\end{array}\right.$	$\begin{array}{r} 267 \\ 190^{\circ} 72 \\ \cdot 267 \\ 199^{\circ} \cdot 16 \end{array}$
$M_{8}\left\{\begin{array}{l} R= \\ \zeta= \\ H= \\ \kappa= \end{array}\right.$	$\begin{array}{r} \cdot 095 \\ 138^{\circ} \cdot 09 \\ \cdot 110 \\ 93^{\circ} \cdot 36 \end{array}$	$\mathrm{L}_{2}\left\{\begin{array}{l} \mathrm{R}= \\ \zeta= \\ \mathrm{II}= \\ \kappa= \end{array}\right.$	44 ± 0 $279^{\circ} \cdot 37$ 600 $128^{\circ} \cdot 24$	$(\mathrm{MS})_{+}\left\{\begin{array}{l}\mathbf{R}= \\ \zeta= \\ H= \\ \kappa=\end{array}\right.$	$\cdot 506$ $306^{\circ} \cdot 41$ $\cdot 524$ $205 \cdot 22$
$O_{1}\left\{\begin{array}{l} R= \\ \zeta= \\ H= \\ \kappa= \end{array}\right.$	$\cdot 340$ $317 \cdot 75$ $\cdot 280$ $22^{\circ} \cdot 61$	$N_{2}\left\{\begin{array}{l} R= \\ \zeta= \\ H= \\ \boldsymbol{H}= \end{array}\right.$	1.089 4.68 1.124 116.51	(SM) $\left\{\begin{array}{l}\mathrm{R}= \\ \zeta= \\ \mathrm{I}= \\ \kappa=\end{array}\right.$	$\cdot 194$ $305^{\circ} 399$.200 $+6^{\circ} \cdot 37$
$K_{1}\left\{\begin{array}{l} R= \\ \zeta= \\ H= \\ \kappa= \end{array}\right.$	$\begin{array}{r} 759 \\ 1990.99 \\ .686 \\ 320.81 \end{array}$	$\lambda_{2}\left\{\begin{array}{l} \mathbf{R}= \\ \zeta= \\ \mathrm{H}= \\ \kappa= \end{array}\right.$		$2 \mathrm{~N}_{2}\left\{\begin{array}{l}\mathrm{R}= \\ \zeta= \\ \mathrm{H}= \\ \boldsymbol{\mu}= \pm\end{array}\right.$	$\begin{array}{r} .259 \\ 51^{0.76} \\ \cdot 268 \\ 16^{\circ} .60 \end{array}$
$K_{2}\left\{\begin{array}{l} R= \\ \zeta= \\ \mathrm{H}= \\ \kappa= \end{array}\right.$	$\begin{array}{r} \cdot 809 \\ 321^{0.63} \\ \cdot 624 \\ 167^{\circ .64} \end{array}$	$v_{2}\left\{\begin{array}{l} \mathrm{R}= \\ \zeta= \\ \mathrm{H}= \\ \kappa= \end{array}\right.$	$\cdot 456$ 1610.41 $\cdot 172$ $105^{\circ \cdot 2} 5$	$\left.\mathrm{M}_{2} \mathrm{~N}\right)_{4}\left\{\begin{array}{l}\mathrm{R}= \\ \zeta= \\ \mathrm{H}= \\ \kappa=\end{array}\right.$	$\begin{array}{r} \cdot 191 \\ 145^{\circ} \cdot 51 \\ \cdot 205 \\ 156^{\circ} 15 \end{array}$
$P_{1}\left\{\begin{array}{l} R= \\ \zeta= \\ H= \\ \mu= \end{array}\right.$	$\begin{array}{r} 197 \\ 245^{\circ .75} \\ \cdot 197 \\ 55^{0.72} \end{array}$	$\mu_{2}\left\{\begin{array}{l} \mathbf{R}= \\ y= \\ \mathrm{H}= \\ \kappa= \end{array}\right.$	$\begin{array}{r} \cdot 476 \\ 1: 36^{\circ} \cdot 09 \\ 510 \\ 29.3^{r} \cdot 73 \end{array}$	$\left(\mathrm{M}_{2} \mathrm{~K}_{1}\right),\left\{\begin{array}{l} \mathrm{R}= \\ \mathrm{y}= \\ \mathrm{H}= \\ \kappa= \end{array}\right.$	$\begin{array}{r} \cdot 196 \\ 324^{\circ .22} \\ \cdot 183 \\ 55^{\circ} .86 \end{array}$
$J_{1}\left\{\begin{array}{l} R= \\ \zeta= \\ H= \\ \kappa= \end{array}\right.$	$\begin{array}{r} 032 \\ 114^{\circ} \cdot 16 \\ \cdot 02 \\ 9.9^{\circ} 1: \end{array}$	$R_{2}\left\{\begin{array}{c} \mathrm{R}= \\ y_{h}= \\ \mathrm{H}= \\ \kappa= \end{array}\right.$		$\left(2 \mathrm{M}_{2} \mathrm{~K}_{1}\right)_{3}\left\{\begin{array}{l} \mathrm{R}= \\ 6= \\ \mathrm{H}= \\ \kappa= \end{array}\right.$	$\begin{array}{r} \cdot 119 \\ 89^{\circ} 8.5 \\ \cdot 115 \\ 54^{\circ} \cdot 67 \end{array}$

Long Period Tilles.

| | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Modlmein, 1914.
Short Period Tides.

Long Period Tides.

Port Blair, 1 gl4.
Short Period Tides.

$A_{0}=4.815$ feet.

$\begin{aligned} & \mathrm{S}_{1}\left\{\begin{array}{l\|r} \mathrm{H} x \mathrm{R}= & 021 \\ \kappa=\zeta= & 60^{\circ} 15 \end{array}\right. \\ & \mathrm{S}_{3}\left\{\begin{array}{l} \mathrm{H}=\mathrm{R}= \\ \kappa=\zeta= \\ \mu=312^{\circ} \cdot 79 \end{array}\right. \end{aligned}$		$\mathrm{Q}_{1}\left\{\begin{array}{l}\mathrm{R}= \\ \zeta= \\ \zeta\end{array}\right.$	$\mathrm{T}_{\mathbf{2}}\left\{\begin{array}{l} \mathrm{R}= \\ \zeta= \\ \mathrm{H}= \\ \kappa= \end{array}\right.$	$\begin{array}{r} .099 \\ 343^{\circ} \cdot 12 \\ \cdot 099 \\ 344^{\circ} \cdot 54 \end{array}$
	$M_{8}\left\{\begin{array}{r\|r} \mathrm{R}= & \cdot 001 \\ \zeta= & 168^{\circ} \cdot 69 \\ \mathrm{H}= & \cdot 001 \\ \kappa= & 123^{\circ} \cdot 03 \end{array}\right.$	$\mathrm{L}_{2}\left\{\begin{array}{lr} \mathrm{R}= & \cdot 049 \\ \zeta= & 39^{\circ} \cdot 01 \\ \mathrm{H}= & 066 \\ \kappa= & 242^{2} \cdot 77 \end{array}\right.$	$(\mathrm{MS}) \cdot\left\{\begin{array}{l} \mathrm{R}= \\ \zeta= \\ \mathrm{H}= \\ \kappa= \end{array}\right.$	$\begin{array}{r} .015 \\ 277^{\circ} \cdot 80 \\ \cdot 01 \mathrm{~B} \\ 178^{\circ} \cdot 39 \end{array}$
$\mathrm{S}_{8}\left\{\begin{array}{l}\mathrm{H}=\mathrm{R}= \\ \kappa=\zeta= \\ \hline 17^{\circ} \cdot 49\end{array}\right.$		$\mathrm{N}_{2}\left\{\begin{array}{rr} \mathrm{R}= & 404 \\ \zeta=1600.93 \\ \mathrm{H}= & 418 \\ \kappa=272^{\circ} \cdot 41 \end{array}\right.$	$(2 S M)_{2}\left\{\begin{array}{l} R= \\ \zeta= \\ \mathbf{H}= \\ \kappa= \end{array}\right.$	$\begin{array}{r} 020 \\ 58^{\circ} \cdot 75 \\ \cdot 021 \\ 160^{\circ} \cdot 16 \end{array}$
$\mathrm{M}_{1}\left\{\begin{array}{lr} \mathrm{R}= & 030 \\ \zeta= & 306^{\circ} \cdot 07 \\ \mathrm{H}= & 014 \\ \kappa= & 0^{\circ} \cdot 33 \end{array}\right.$		$\lambda_{2}\left\{\begin{array}{l} \mathrm{R}= \\ \zeta= \\ \mathrm{H}= \\ \kappa= \\ \kappa= \\ \cdots \end{array}\right.$	$2 \mathrm{~N}_{2}\left\{\begin{array}{l}\mathrm{R}= \\ \zeta= \\ \mathrm{H}= \\ \kappa=\end{array}\right.$	$\begin{array}{r} \cdot 042 \\ 304^{\circ} \cdot 84 \\ \cdot 043 \\ 269^{\circ} \cdot 20 \end{array}$
	$\mathrm{K}_{2}\left\{\begin{array}{l}\mathrm{R}= \\ \zeta= \\ \mathrm{H}= \\ \mathrm{H}= \\ \boldsymbol{c}=335 \\ \end{array}\right.$	$\nu_{2}\left\{\begin{array}{l\|r} \mathrm{R}= & \cdot 127 \\ \zeta= & 307^{\circ} \cdot 97 \\ \mathrm{H}= & \cdot 132 \\ \kappa= & 251^{\circ} \cdot 48 \end{array}\right.$	$\left(\mathrm{M}_{8} \mathrm{~N}\right)_{+}\left\{\begin{array}{l}\mathrm{R}= \\ \zeta= \\ \mathrm{H}= \\ \kappa=\end{array}\right.$	$\begin{array}{r} .004 \\ 88^{\circ} \cdot 41 \\ 004 \\ 98^{\circ} \cdot 47 \end{array}$
$\mathrm{M}_{3}\left\{\begin{array}{l\|r} \mathrm{R}= & .006 \\ \zeta= & 176^{\circ} \cdot 93 \\ \mathrm{H}= & \cdot 006 \\ \kappa= & 24^{\circ} \cdot 91 \end{array}\right.$	$P_{1}\left\{\begin{array}{rrr} \mathrm{R}= & \cdot 132 \\ \zeta= & 153^{\circ} \cdot 71 \\ \mathrm{H}=132 \\ \kappa= & 1323^{\circ} .67 \end{array}\right.$	$\mu_{2}\left\{\begin{array}{lr} \mathrm{R}= & .087 \\ \zeta=127^{\circ} \cdot 55 \\ \mathrm{H}= & \cdot 093 \\ \kappa=254^{\circ} \cdot 72 \end{array}\right.$	$\left(M_{9} \mathrm{~K}_{1}\right)_{s}\left\{\begin{array}{l}\mathrm{R}= \\ \zeta= \\ \mathrm{H}= \\ \kappa=\end{array}\right.$	$\begin{array}{r} .020 \\ 115^{\circ} \cdot 54 \\ .019 \\ 206^{\circ} \cdot 95 \end{array}$
$\mathrm{M}_{4}\left\{\begin{array}{lr} \mathrm{R}=r & .019 \\ \zeta=311^{0.71} \\ \mathrm{H}= & .021 \\ \%=108^{0.88} \end{array}\right.$	$\mathrm{J}_{1}\left\{\begin{array}{lr} \mathrm{R}= & 029 \\ \zeta= & 326^{\circ} \cdot 03 \\ \mathrm{H}= & \cdot 025 \\ \kappa= & 307^{\circ} \cdot 12 \end{array}\right.$	$\mathrm{R}_{2}\left\{\begin{array}{l} \mathrm{R}= \\ \mathrm{y}= \\ \mathrm{H}= \\ \kappa= \\ \kappa= \\ \cdots \end{array}\right.$	$\left(2 \mathrm{Mm}_{2} \mathrm{~K}_{\mathrm{H}}\right),\left\{\begin{array}{l} \mathrm{R}= \\ \zeta= \\ \mathrm{H}= \\ x= \end{array}\right.$	$\begin{array}{r} .009 \\ 247^{0.95} \\ .008 \\ 212^{\circ} \cdot 30 \end{array}$

Long Period Tides.

				R	ζ	H	κ
Lunar Monthly T	Tide	-	-	$\cdot 035$	$274^{\circ} \cdot 62$. 040	$61^{\circ} \cdot 74$
, Fortnightly	"	.	-	$\cdot 040$	$59^{\circ} \cdot 67$	$\cdot 028$	$9^{\circ} 04$
Luni-Solar ,	"	-	-	$\cdot 029$	$209^{\circ} \cdot 50$	$\cdot 0.30$	$310^{0.92}$
Solar-Annual	"	-	-	$\cdot 247$	$229^{\circ} 74$	$\cdot 2+7$	$149^{\circ} \cdot 78$
" Semi-Annual	,	-		-212	$324^{\circ} \cdot 56$	-212	$161^{\circ} 64$

Data fortiarded to England.

The following data were prepared and supplied to the Director, National Physical Laboratory, Teddington, England, during the year under report:-
(a) values of the tidal constants for 40 ports for the tide-tables for 1918 ready for use for the tide predicting machine;
(b) actual values of high and low water during 1913 at 12 stations. These include nine stations at which regular tidal observations by self-registering tide-gauges were carried out, two stations at which high and low water readings were taken during daylight on tide-poles, and one station at which times and heights of high and low water were obtained from the diagrams of a small rivergauge supplied by the Port Officer ;
(c) comparisons of the above with predicted values for 1913: the errors being tabulated in such form as to be of use in improving the predictions.

Errors in predictions.

The predicted times and heights of high and low water for the year 1914 as given in the tide-tables, have been compared against the actual values obtained from tidal observations at the nine stations now working and at three other stations where tidal registrations by self-registering tide-gauges were stopped, but the times and heights of high and low water were read on the tide-poles.

The errors of the predictions thus determined are tabulated in the five tables herewith appended.

No. I.
Stutement showing the percentage and the amount of the errors in the predicted times of high water at the various tidal stations for the year 1914.

- Otmorrationa taken with a mall rivargange ly the Port Officer for part of the gear .

No. 2.

Statement showing the percentage and the amount of the errors in the predicted times of low water at the various tidal stations for the year 1914.

Stations.	Automatic or tIde-pole observa tons.	Namber of of comparisone between aotual nand predloted valace.		$\begin{gathered} \text { Errors } \\ \text { miner } \\ \text { minutes } \\ \text { nud under } \\ \mathbf{1 5} \text { minutee. } \end{gathered}$	$\begin{gathered} \text { ErrorA } \\ \text { over } 15 \\ \text { minutce } \\ \text { mind tinder } \\ 20 \text { minates. } \end{gathered}$	$\begin{gathered} \text { Errors } \\ \text { orver } 20 \\ \text { minut } \\ \text { snd under } \\ \text { sind ondintes. } \end{gathered}$	$\begin{gathered} \text { Errors } \\ \text { over } 30 \\ \text { mlantee. } \end{gathered}$
			Per cent.				
Aden	Auto.	666	29	43	12	9	7
Karāchi • . .	Do.	704	32	39	10	11	8
Bhaunagar . . .	T. P.	365	68	32	0	0	0
((Apollo Bandar)	Auto.	705	38	46	8	6	2
Bombay \{ (Prince's Dock)	Do.	695	37	49	10	3	1
Madras	Do.	705	43	37	6	7	7
Kidderporo	Do.	705	27	42	13	12	6
Chittagong* . . .	Anto. and T. P.	479	21	35	14	14	16
Akyab	T. P.	357	98	2	0	0	0
Rangoon . . .	Auto.	702	35	35	12	12	6
Moulmein . .	Do.	701	22	36	16	15	11
Port Blair	Do.	704	39	40	12	7	2

- Obserrations taken with a small river-gauge by the Port Officer for part of the jear.

No. 3.

Statement showing the percentage and the amount of the errors in the predicted heights of high water at the various tidal stations for the year 1914.

Statiods.	Automatic tide-pole ubserva. thons.	Nnmber of compriaswas between actunl and predioted valnee.	Mebn range 01. in feet.	Erints of 4 iuches und under.	Firrors over 4 Inches and under 8 inches.	Errors ofer 8 inches and under 12 iucher.	Ertora over 12 iuchea,
				Per oent.	Per cent.	Per cent.	Per cent.
Aden	Auto.	673	6.7	96	4	0	0
Kar酸i - .	Do.	702	$9 \cdot 3$	55	36	8	1
Bhaunagar . . .	T. P.	365	31.4	61	34	5	0
Bumbe $\left\{\begin{array}{l}\text { (Apollo Bandar) }\end{array}\right.$	Auto.	706	$13 \cdot 0$	71	24	4	1
(Prince's Dock)	Do.	- 701	$13 \cdot 9$	66	26	6	2
Madras .	Do.	70.1	$3 \cdot 5$	88	10	2	0
Kidderpore . . .	Do.	705	11.7	41	25	16	$18{ }^{\circ}$
Chittagong* . .	Auto. and T. P.	486	$13 \cdot 3$	47	25	17	11
Akyab . .	T. P.	361	$8 \cdot 3$	88	11	1	0
Rangoon . . .	Auto.	699	16.4	61	29	1.1	6
Moulmein	Do.	699	$12 \cdot 7$	38	29	16	17
Port Blair	Do.	705	6.6	88	11	1	0

[^0]
No. 4.

Statement showing the percentage and the amount of the errors in the predicted heights of low water at the various tidal stations for the year 1914.

Stations.	Antomatic or tide-pole tions. tions.	Number of comprifons betreen aetanel and predicted values.	Mean rasgo spring in leet			Errore over s inches and unde: 12 inches.	$\begin{aligned} & \text { Error } \\ & \text { over } 12 \\ & \text { inchee. } \end{aligned}$
				Per cent.	Per cent.	Per cent.	Per cent.
Aden . . .	Auto.	606	6%	92	8	0	0
Karāchi . . .	Do.	$70 \pm$	$9 \cdot 3$	70	25	5	0
Bhaunagar . .	T. P.	365	31.4	69	35	5	0
(Apollo Bandar)	Auto.	705	$13 \cdot 9$	66	26	7	J
Bombay \{ (Prince's Dock)	Do.	605	$13 \cdot 9$	66	27	6	1
Medras . . .	Do.	705	$3 \cdot 5$	85	14	1	0
Kidderpore	Do.	705	$11 \cdot 7$	37	23	19	21
Chittagong*	Auto. and T. P.	479	13'3	49	25	14	12
Akyab	T. P.	357	$8 \cdot 3$	84	13	1	2
Rangoon . .	Auto.	702	16.4	24	25	20	31
Moulmein	Do.	701	$12 \cdot 7$	32	23	13	32
Port Blair	Do.	704	$6 \cdot 6$	94	6	0	0

- Observatlons taken with a small rivor-gange by the Port OHfer for part of the gear.

No. 5.

Table of average errors in the predicted times and heights of high and low water at the several tidal stations for the year 1914.

* Observatione taken wilh a emall river-gauge by the Port Offecer for part of the year.

The foregoing statements for the year 1914 may be thus summarised :-
Percentage of time predictions within 15 minutes of actuals.

Percentage of lieight predictions within 8 inches of actuals.

Percentage of height predictions within one-tenth of mean range.

Comparisons of the Predictions for 1914 with those for the previous pear.

The predictions for heights of high and low water at all the working stations for the year 1914 have been just as good as those for the previous year. The predictions for times at Aden have become rorse and at Moulmein slightly better than those for 1913 : at the remaining seven stations ther are practically the same.

The greatest difference between the actual and predicted heights of low water for 1914 at the riverain ports were as follows :-
Kidderpore $\quad . \quad 3^{\prime} 3^{\prime \prime}$ on 17th May 1914, actuals being higher.
Rangocu $\quad . \quad . \quad 2^{\prime} 5^{\prime \prime}$ on 6th and 21st November 1914, actuals being lower.
Moulmein $\quad . \quad .3^{\prime} 0^{\prime \prime}$ on 24th Ootober 1914, actuals being lower.

Tide-tables.

The tide-tables for the year 1916 have been received from England and distributed to the various officers concerned. The tide-tables for the year 1917 are being published in England and the data for the preparation of the tide-tables for 1918 were despatched to England in April 1915.

The amount realised on the sale of the tide-tables during the year ending Scptember 1915 is Rs. 2,159.

Programme for Season 1915-16.

Tidal observations during the coming year will be continued at the 9 observatories now working.

LEVELLING.

No. 17 PARTY.

(Vide Index Map No. 14).
By Mr. H. G. Shaw.
Three detachments were employed on the new system of "fore and back double levelling" operations during the season.

No. 1 Detachment.

This detachment was employed on the following lines of levels :-
(1) Levelling from Bareilly to Häthras along the main road viá Budaun, Käsganj and Sikandra Rao, crossing the Rāmgangà near Bareilly and the Ganges at Soron by the railway bridges.
(2) Levelling from Multān tu Bahāwalpur along the main road viá Lār and Lodhrän, the Sutlej river at Adamwàhan being crossed by the railway bridge.
(3) Revisionary levelling from Meerut to Bareilly along the main road, crossing by railway bridges the rivers Ganges, Rāmgangà and Kosī, at Garhmuktesar, Morādābād and Rāmpur, respectively.
The line Bareilly-Hathras is an entirely new line and was levelled by two levellers, each working independently from opposite ends of the line. This line breaks up the large circuit, Meerut-Bareilly-Lucknow-Cawnpore-Agra-Häthras-Meerut (all of which were worked between 1861 and 1869, except the portion Meerut-Bareilly which was revised this season) into two parts, namely, (a) Bareilly-Hāthras-Meerut-Bareilly, and (b) Bareilly-Lucknow-Cawnpore-Agra-Hāthras-Bareilly. The closing errors being 0.064 and 0.202 of a foot, respectively, as shown below :-

The line Multän-Pahäwalpur is a new line and was carried out by one leveller who levelled over the line twice, once in the forward and nnce in the back direction. It closes two circuits, namely, (a) Multän-Khemwăla-Murghai-Jamrani-Bahāwalpur-Multān, and (b) Multān-Bahāwalpur-Jamrani-Ferozepore-Lahore-Sargodha-Multāa. The closing errors being 0.309 and $0 \cdot 195$ of a foot, respectively, as shown below. The circuit (b) will be broken into two smaller ones during the field season 1915-16 : -

Lines.	$\begin{gathered} \text { Distance } \\ \text { in } \\ \text { milea. } \end{gathered}$	Observed difference of height in feet.	$\begin{gathered} \mathbf{Y}_{\text {ear }} \\ \text { of } \\ \text { oberration. } \end{gathered}$
Circuit B-contd.			
$\left.\begin{array}{ll} \text { From Jamrani Bench-mark } \\ \text { To } & \text { G. T. S. stone Bench-mark at } \\ \text { Ferozepore. } \end{array}\right\}$	$225 \cdot 4$	+278.349	1880゙-61
From G. T. S. stone Bench-mark at $\begin{gathered}\text { Ferozepore }\end{gathered}$	49•1	$+63.876$	1019
To G.T.S. Standard Bench-mark at $\begin{array}{r}\text { Lahore Cantonment. }\end{array}$			
From G. T. S. Standard Bench-mark at Lahore Cantonment			
$\left.\begin{array}{ccc} & \text { G. T.S. } & \\ \text { To } & \text { at } \begin{array}{c}\text { N.W. Kailway Rest } \\ \text { House, Sargodla Rail- }\end{array} \\ & \text { B. M. } & \begin{array}{c}\text { way station. }\end{array}\end{array}\right\}$	$117 \cdot 2$	-94.231	1911-17
$\text { From } \begin{array}{cccc} \text { G.T.S. } \\ \text { Q. M. } & \text { at N.-W. Ry. } & \begin{array}{c} \text { Rest } \\ \text { House, Sargodha } \\ \text { way station. } \end{array} \end{array}$			
$\begin{array}{ccc} & \text { G. T.S. } \\ \text { To } \quad \text {. } & \text { M. } & \text { embedded at Multān. } \\ & \text { B. }\end{array}$	$173 \cdot 7$	-213.480	$\begin{gathered} 1911-12 \text { and } \\ 18 \end{gathered}$
Total	$640 \cdot 0$	$+0 \cdot 195$...

Revisionary levelling, Meerut to Bareilly viâ Moräàābäd.-The original $l^{\text {evelling from Meerut to Bareilly via Morādābād was carried out in seasons }}$ 1867-68-69. 'The present revision was worked in two parts, viz.:-Meerut to Morādābād and Bareilly to Morädābād. The part Meerut to Morādābād was levelled twice over in opposite directions by one leveller only on widely different dates, commencing from Meerut and closing at Morādēbād and then working back from Morädābād to Meerut. The part Bareilly to Morādābād was also levelled twice over in opposite directions on widely different dates, but by two levellers starting from opposite ends of the line.

The new height of the standard bench-mark at Bareilly as determined by the present revisionary levelling from Meerut, a distance of 138 miles, differs from the height published in G. T. S. Volume XIX-B, by +0.268 of a foot. The new height of the same bench-mark as deduced from the new line HāthrasBareilly, 108 miles in length, also differs from the published height by +0.219 of a foot. The height of the embedded bench-mark at Hāthras City as determined by the nresent levelling from Meerut vid Bareilly to Hāthras, a distance of 246 miles, only differs from that published in Volume XIX-B, by +0.069 of a foot. It is, therefore, probable that the above discrepancies between BareillyMeerut and Bareilly-Hāthras, are due to the unsatisfactory connection, in 1905-06, of the standard bench-mark at Bareilly.

Of the old bench-marks on the Meerut-Bareilly line only 5 were found intact. Of the others some had been reconstructed so as not to be exactly identical with the old bench-marks, others had been disturbed or destroyed, and a good many could not be found at all owing to the vagueness of the descriptions.

No. 2 Detachment.

This detachment carried out levelling operations from Benares to Barākar along the Grand Trunk Road, crossing the Son river over the Causeway at Dehri.

Branch lines for irrigation purposes were also run along the Patna Canal from Barin to Belsar and from Bankipore to Bihta.

It was intended to carry the Benares-Barākar line on to Chämpdāni, distance about 20 miles from Howrah, and thus complete the line from Benares to Howrah, but this had to be postponed until season 1915-16, as it was too late in the season, the hot weather having set in, to continue work any longer. The progress of work on this line of levels was considerably retarded on account of the undulating nature of the country from near Sherghāti to Baräkar.

In the above lines of levels and for those carried out by No. 3 Detachment, each section of the lines of levels was levelled twice over in opposite directions on the same day by two levellers.

No. 3 Detachment.

This detachment had for its programme:-
(1) revisionary levelling from Bellary to Gooty,
(2) to level from Raichīr to Bagalkot,
(3) to level from Bagalkot to Bijāpur.

Revision of the line from Bellary to Gooty.-This line was originally levelled in 1873-74. It practically follows the main unmetalled road viát Gadekal and Guntakal to Gooty.

The present levelling shows satisfactory accordance with the 1873-74 work as also with the levelling of 1907-08 as shown in Table III. Seven old benchmarks only of 1873-74, were found and connected, the others having either been reconstructed or destroyed.

The line from Raichír to Bagalkot is a new one and completes the line from Belgaum to Raichūr via Bagalkot. It was carried along the metalled road from liaichūr to Lingsugūr, thence along it cart track to Hungund, and from thero along the metalled road to Bāgalkot viá Sirūr. This section, Raichūr to Bāgalk'ot, completes tine circuit Bāgalkot-Belgaum-Hubli-Bellary-Kosgi-Raichūr-Bāgalkot, all lincs of recent levelling.

The closing error being 0.619 of a foot in a distance of $\mathbf{0} 19$ miles, as given in the table below.

The orthometric height of the rock cut hench-mark at the Public Works Department Office, Bagalkot, ns deduced from Belgaum and published in G. T. S. Volume XIX-A, is $1719 \cdot 743$ feet; taking the observed difference of level now obtainod between the Raichū Standard and the above bench-mark at Bāgalkot, and applying approximately the orthometric correction, we get
the height of the Bāgalkot beuch-mark to be $1719 \cdot 826$ feet. Thus showing a discrepancy of +0.083 of a foot in a distance of 121 miles :-

The line Bägalkot-Bijäpur, a new line, was carried along the metalled road, crossing the Krishna (K istna) river near Kolhar. The levels were carried across this river, which is 550 yards in width, by ordinary levelling. The
instruments were set up on three small rocky islands, the longest shot not exceeding 5 chains. This method of crossing this river is only possible during the dry season, when the water is low. During the monsoons the water rises about 20 or 30 feet and floods the surrounding country.

It was intended to continue this line, by revisionary levelling, from Bijãpur to Sholapur originally levelled in 1879-80, but it was not found possible to take it up.

The published height given in G. T. S. Volume XIX-A for the bench-mark
 obtained of this same bench-mark is $1957 \cdot 596$ feet by applying the observed difference of level, 237853 feet, to the published height of the rock cut benchmark $\frac{8,}{-\frac{8}{5}-\mathrm{F} .}$ at Bāgalkot, showing a discrepancy of +0.472 of a foot in a distance of 54 miles. It is difficult to assign any reason for this large discrepancy until the line from Bijāpur to Sholāpur has been revised. For the present that line must be looked upon with suspicion, as we have no reason to doubt either the present levelling, or the height of the initial point at Bāgalkot; it holds good with both Belgaum and Raichūr.

In addition to the above about 50 miles of single levelling were carried out in the Island of Bombay, at the request of the Local Government, in order to provide sufficient bench-marks for the control of the large scale survey of the island which was then in progress.

The lines of levels comprise a main circuit, running right round the island along the principal roads near the coast, six cross lines and two branch lines, the whole forming a network of levelling which supplied numerous checks against errors at short intervals : it was therefore considered unnecessory to employ double-levelling. During the course of this levelling 13 old bench-marks of line No. 32 were reconnected, and the heights above mean sea-level of 142 new embedded and inscribed bench-marks were determined.

General Notes.

The details of the outturn of work completed by each detachment during the season under report are given in Table I attached.

The outturn of the detachments amounted to 947 miles. In the course of this levelling 145 miles were relevelled as the differences in height obtained between consecutive bench-marks from the fore and back observations exceeded the assigned limits.
TABLE I.-No. 1 Detagenent.
Tabular statement of outturn of work, season 1914-15.

TABLE I-(eontinued)-No. 2 Detagement.
Tabular statement of outturn of work, season 1914-15.

Lides.	Monthe.	MEAs diatamos lavilubia moti dinctions.			$\begin{gathered} \text { Mean } \\ \text { dilancen } \\ \text { relorellod } \\ \text { in both } \\ \text { directions. } \end{gathered}$	Total nowhbz oz nezt DRECTIOYf). (MEAK or botyDRECTIOPA).		$\underset{\substack{\text { Mean } \\ \text { nomber } \\ \text { of }}}{\text { and }}$ stations at instraments wire both directions.	NUMBER Of bench-matis connected.											Rimaris.	
		Maia line,	${ }_{\text {Extra }}^{\substack{\text { Exiliand } \\ \text { and }}}$	Total.				Primasy,	Sxocruamy.												
						Eisec.	Falle.			$\begin{array}{\|c\|c\|} \hline \text { Principal } \\ \text { Gtipal } \\ \text { stationg. } \end{array}$				Jaceribed.		$\begin{aligned} & \dot{\text { a }} \\ & \dot{\beta} \\ & \dot{\text { in }} \end{aligned}$	官 总 an				
Benares to Barākar		Mls. Cbs. Lke.	M1s. Che. Lese,	Mla, clse. Lke.	M19. Che. Lks.																
	November 101.t.	$\begin{array}{lll}13 & 71 & 02\end{array}$	$\begin{array}{lll} 11 \quad 23 & 51 \end{array}$	$\begin{array}{\|lll\|}55 & 14 & 53\end{array}$	$6 \quad 16 \quad 22$	282:256	291-249	616	\cdots	1	1	1	6	7	29	...	\cdots	7	2		
	December "	$\begin{array}{lll}47 & 51 & 41\end{array}$	$26 \quad 30 \quad 38$	$74 \quad 0179$	$8 \quad 60 \quad 37$	360.159	$260 \cdot 614$	819	\cdots	\cdots	4	\cdots	40	1	8	20	2		
	January 1915.	$66 \quad 66 \quad 76$	4.1385	$71 \quad 30 \quad 61$	$\begin{array}{lll}7 & 23 & 69\end{array}$	975'856	751-320	800	2	\cdots	8	\cdots	34	\cdots	1	25	3		
	February ",	$\begin{array}{llll}30 & 79 & 75\end{array}$	$2 \quad 69 \quad 01$	$\begin{array}{llll}63 & 68 & 76\end{array}$	$8 \quad 19 \quad 19$	$1888 \cdot 642$	1185'221	793	30	1	3	\cdots	16	1	1		
Faukipore to Bihta	March "	$63 \quad 3047$	$\begin{array}{lll}63 & 30 & 47\end{array}$	$6 \quad 47 \quad 34$	1963.733	2696'882	920	43		6	\ldots	¢	\cdots	\cdots		
	april "	$\begin{array}{lll}11 & 23 & 97\end{array}$	\cdots	1112307	$0 \quad 48 \quad 85$	261.682	414.574	162	5		...		2	...	6	...		1	1		
	Totals	$284 \quad 03 \quad 38$	45 06 75	$329 \quad 10 \quad 13$	$37 \quad 62 \quad 66$	5732 3 3 8	$5608 \cdot 860$	4,110	80	1	1	2	29	7	130	1	9	54	8		
	April 1915	$\begin{array}{lll}20 & 76 & 17\end{array}$	$2 \begin{array}{lll}2 & 08 & 10\end{array}$	$\begin{array}{lll}23 & 04 & 27\end{array}$	\ldots	$135 \cdot 822$	107.759	248	...	1	2	10	...	3		
	Totals	20×7617	$2 \begin{array}{lll}2 & 08 \\ 10\end{array}$	$\begin{array}{lll}23 & 0.1 & 27\end{array}$	135.822	107.759	248	...	1	\ldots	..		2	10	\ldots	3		...		
	Grand Totals	$30479 \quad 65$	$17 \begin{array}{lll}17 & 14 & 85\end{array}$	$35214 \quad 40$	$37 \quad 62 \quad 66$	$5868 \cdot 150$	5716.619	4,358	80	2	1	2	29	9	140	1	12	54	9		

TABLE I-(conchuded)-No. 3 Detacembet.
Tabular statement of outturn of work, scason 1914-15.

TABLF II-Cheok-levelling.
Discrepancies between the old and new leights of bench-marks.

TABLE II-(contd.)-Check-levilling.
Diserepancies between the old and new heights of bench-marks.

Disorepancies between the old and new heights of bench-marks.

[^1]Table II. - (contd.) - Check-levelling.
Discrepancics between the old and new heights of bench-marks.

TABLE II-(concll.) -Check-levelling.
Discrepancies between the old and new heights of iench-markis.

table III-Revision levalling.
Discrepancies between the old and uew heights of bench-marks.

TABLE III-(contd.)-Revibion levellina.
Discrepancies between the old and new leights of bench-marks.

Revision of line Meerut-Morädābid, part of live No. 64 (Meerut-Lucknow)-contd.

115 ,	53-H.	Mile-post			21.2	-27.820	1867-69	-27.512	+0.308	Re-constrd., inscription cat in 1914-15.
116	" !	! Bridge	-		$21 \cdot 8$	-26.689	1867-69	-26.858	$+0.031$	$\begin{aligned} & \text { Ingcription } \\ & \text { cut in } \\ & \text { 1914-15. } \end{aligned}$
118	"	Do.	.		22:3	-22.080	1867-69	$-23 \cdot 048$	-0.968	Re-constrd., inseription cut in 1914-15.
	53-L.	Mile-post	.		24:2	-31.593	1867-69	-32.076	-0.483	Ditto.
2	"	Do.	.		$25 \cdot 2$	$-33 \cdot 628$	1867-69	-33.803	-0.175	Ditio.
3	"	Do.	.		26.2	-36.814	1867-68	-97.422	-0.608	Ditto.
4	"	Do.	.		27•2	-40.179	1867-69	-40.196	+0.283	Ditto.
5	"	Do.	-		$28 \cdot 2$	--39.045	1867-69	-38.747	+0.298	Ditto.
6	"	Do.			29.2	-30:552	1867-60	- $30 \cdot 483$	+0.069	$\begin{aligned} & \text { Inscription } \\ & \text { cut in } \\ & \text { cintis. } \end{aligned}$
7	"	Culvert	.		$29 \cdot 9$	-37.895	1867-69	-39.076	-1.181	$\begin{aligned} & \text { Re-constrd., } \\ & \text { inscription } \\ & \text { cut in } \\ & \text { 1914-15. } \end{aligned}$
11	"	Bridge	-		39.7	-76.107	1867-6?	-75.073	+0.034	$\left\{\begin{array}{l} \text { Inseciption } \\ \text { cut int in } \\ 191+15 . \end{array}\right.$
32	"	Milestone			$39 \cdot 9$	$-77 \cdot 9.7$	1867-69	-75.234	$+2 \cdot 693$	Re-constid. inscription cut in 1914-15.
14	"	Bridge			41.0	-80.691	1867-69	-80.008	$+0.683$	Ditto.
15	"	Well			41.9	-73.071	1847-69	--73.943	+0.028	$\begin{aligned} & \text { Inscríption } \\ & \text { nat } \operatorname{lin} \\ & \text { 1914-15. } \end{aligned}$
17	"	Bridge	-		437	-69943	1867-69	-69.839	+0.101	Ditto.
19	"	Do.	.		$43 \cdot 1$	$-71 \cdot 668$	1867-69	-70.63s	+1.030	Re-constrd, inscription cat in 1914-15.
20	"	Milestone	-		$43 \cdot 9$	-82.663	1867.69	-69.829	+2.83.	Ditto.
21	"	Do.			449	-55.182	1867-69	-56.381	-1.199	Ditto.
23	"	Bridge			46.4	-55.333	1867.69	-55.578	$-0.2 .15$	Ditto.
3.4	"	Mileatone	-		46.9	-61.164	18A7.69	-60.731	+0.433	Ditto.

table III-(contil.)-Revision levblinge.
Discrepancies between the old and new heights of bench-marks

Revision of line Meerut-Morādābād, part of line No. 64 (Meerut-Lucknow)—contd.

25	53-L.	\| Milestone	- .	47.9	-50.651	1867-69	-48.730	$+1.921$	$\begin{aligned} & \text { Re-conitrd., } \\ & \text { ingeription } \\ & \text { cut in } \\ & \text { 1914-15. } \end{aligned}$
26	"	Do.	. .	$48 \cdot 9$	-48.512	1867-69	-46.792	$+1720$	Ditto.
27	"	Do.	. .	$49 \cdot 9$	-48.058	1867-69	--47•138	+0.920	Ditto.
28	"	Do.	. .	$50 \cdot 9$	-43.919	1867.69	-44.840	-0.921	Ditto.
29	"	Do.	. .	51.9	-45.774	1867-69	$-46 \cdot 744$	-0.970	Ditto.
30	"	Culvert	. \cdot	52.0	$-46 \cdot 132$	1867.69	-46.387	+0.045	$\begin{aligned} & \text { Inscription } \\ & \text { cut in } \end{aligned}$ $\begin{aligned} & \text { cut in } \\ & \text { 1914-15. } \end{aligned}$
32	"	Bridge	- -	$52 \cdot 4$	-46.284	1867.69	-44.840	$+1 \cdot 444$	Re-constrd. inscription cut in 1914-15.
34	"	Do.	. \cdot	53.2	-45.624	1867.69	-44.863	+0.761	Ditto.
35	"	Milestone	. .	54.0	$-46 \cdot 466$	1867-69	-45.982	+0.504	Ditto.
36	"	Bridge	- .	55.0	-48.381	1867.69	-48.607	-0.226	Ditto.
37	"	Milestone	. .	55.0	$-49 \cdot 469$	1867.69	-50.034	-0.565	Ditto.
38	"	Bridge	. .	$55 \cdot 9$	-50.315	1867.69	-49.326	+0.989	Ditto.
39	"	Milestone	. .	56.0	-49.784	1867.69	-61.517	-1.733	Ditto.
40	"	Bridge	- .	56.4	-50.790	1867-69	-50.009	+0.781	Ditto.
41	"	Milcetone	. \cdot	57.0	-48.870	1887-69	-50.906	-1.036	Ditto.
43	"	Bridge	. .	58.3	-53.951	1867.69	-62.807	+1.144	Ditto.
44	"	Milestone	. .	59.0	-51.839	1867-69	-52.916	-1.077	Ditto.
45	"	Bridge	. .	596	-59.607	1867-69	-62.310	+0.197	Ditto.
46	"	Milestone	- .	60.0	-51.282	1867 -69	-52.459	-1.177	Ditto.
47	"	Bridge	..	$60 \cdot 2$	-59.333	1867-69	-52.581	+0.752	Ditto.
60	"	Sirsa T. S.	. .	$69 \cdot 1$	+0.194	1867-69	+0.283	+0.089	
51	"	Milestone	. .	62.0	-61.058	1867-69	-58.078	+2.980	Re-constrd, inscription cut in 1914-15.
52	"	Bridge	-	62.7	-59.920	1867-60	-69.406	+0.514	Ditto.
64	"	Well .	-	$63 \cdot 3$	-60.883	1867-69	-60.950	-0.067	$\begin{aligned} & \text { Ingeription } \\ & \text { cut in } \\ & \text { 1914-15. } \end{aligned}$
66	"	Bridge	-	61.2	-61'832	1867-69	-62-790	-0.067	Re-constrd. inscription cut in 1914-15.

TABLE III-(contd.)-Revision levelling.

Discrepancies betzoeen the old and new heights of bench-marks.

Revision of line Meerut-Morädäbäd, part of line No. 64 (Merrut-Lucknow)-concld.

57	53-L.	Bridge	$66 \cdot 2$	-62•836	1867-69	-63.352	-0.516	$\left\{\begin{array}{l} \text { Re-conatrd, } \\ \text { ingecipipion } \\ \text { cut in } \\ \text { 1914-15. } \end{array}\right.$
58	"	Milestone	67.0	-66.987	1867.69	-68.017	-1.030	Ditto.
59	"	Do.	68.0	-68.929	1867-69	-67.793	+1.136	Ditto.
60	"	Bridge	$68 \cdot 9$	$-73 \cdot 687$	1867-69	-72.134	+1.653	Ditto.
62	"	Milestone .	$70 \cdot 1$	-74.522	1867-69	-74.353	$+0.169$	Ditto.
-64	"	Bridge	71.6	-82.073	1867-69	-83.092	-1.019	Ditto.
65	"	Mulestone	72.0	-90.911	1867-69	-89.294	+1.617	Ditto.
66	"	Bridge	72.3	-96.050	1867-69	-95.660	+0.390	Ditto.
68	"	Do.	$73 \cdot 3$	-98.752	1867-69	-97.180	+1.572	Ditto.
69	"	Milestone	$74 \cdot 1$	-101.891	1867 -69	-102.689	-0.798	Ditto.
70	"	Bridge	743	-101.750	1867-69	$-101 \cdot 510$	+0.240	Ditto.
71	"	Do.	74.9	-101 453	1867.69	-102.598	-1.145	Ditto.
73	"	Do.	75.5	-105.698	1867-69	-104:926	+0.772	Ditto.
74	"	Do.	757	-102.796	1867-69	-10\$620	-0.824	Ditto,
78	"	Do.	77.2	-86.113	1867-69	-86.068	+0.045	Letters B. II. cut in 1914 -15
83	"	Culvert	78.5	$-85 \cdot 488$	1867-69	$-85 \cdot 482$	-0.006	Inscription 1914-15
86	"	Well	$79 \cdot 6$	$-87 \cdot 156$	1567-69	-87.08.	+0.072	
87	"	Culvert	79.7	$-93 \cdot 639$	1867-69	$-.93 \cdot 745$	-0.106	$\left\{\begin{array}{c} \text { Inseription } \\ \text { cut in } \\ \text { 101-15. } \end{array}\right.$
80	"	Do.	$80 \cdot 2$	-94.763	1867.69	-94.890	-0.127	
92	"	Bridge	80.9	-85.131	1867-69	- 85.213	-0.082	Inscription cut in 191/-15
93	"	Bhatauli T. S.	S1.6	-49.881	1867-69	-40.931	-0.050	
95	"	St. Paul's Church, Moràdābād.	77.6	-84.709	1867-69	- $8.4 \cdot 486$	+0.223	

Revision of line Bareilly-Morädä̀äd, part of line No. 64 (Meerut-Lucknoio).

TABLE III-(contd.)-Rxvision levelling.

Discrepancics between the old and new heights of bench-marks.

Revision of line Bareilly-Morädabād, part of line No. 64 (Meerut-Lucknow)-contd.

TABLE III-(contd.)-Revision levelling.
Discrepancies between the old and new heights of bench-marks.

Revision of line Bareilly-Morädabid, part of line No. 64 (Meerut-Lucknow)—contd.

18	63.P.	Bridge	$19 \cdot 2$	$+3 \cdot 352$	1867-69	$+3 \times 302$	-0.050	Inscription cut in 1014-15.
17	"	Culvert	$20 \cdot 7$	+5\%286	1867-69	$+5 \cdot 374$	+0.088	He-constrd. inscription cut in 1914-15.
14	"	Bridge	$23 \cdot 1$	$+13 \cdot 580$	1867-69	+13.200	-0.380	Ditto.
12	"	Culvert	$25 \cdot 3$	+16:738	1867-60	+16.535	-0.203	Re-constrd.
11	"	Do.	$25 \cdot 7$	+17.540	1867-69	+17.346	-0.194	Ditto.
10	"	Bridge	$25 \cdot 8$	+19.709	1867.69	+18.876	-0.633	Re-constrd. inscription cnt in 1914-15.
9	"	Do.	$20 \cdot 3$	+19.044	1867.69	+18.815	-0.229	Ditto.
7	"	Culvert	28.4	$+23.061$	1867-69	+22.908	-0.153	Dittu.
4	"	Bridge	37.6	+4.276	1867.69	+44.064	-0.212	Ditto.
3	"	Do.	36.2	+46:901	1867-69	+46761	-0.140	Ditto.
2	"	Do.	$30 \cdot 2$	+49.585	1867-69	+49 402	-0.183	Ditto.
1	"	Do.	$40 \cdot 3$	+51.033	1867-69	$+50 \cdot 885$	-0.168	Ditto.
113	53-L.	Pillar, Enoamping ground.	44 1	$+51 \cdot 5.44$	1867-68	+51.325	-0.219	Top damaged.
112	"	Bridge	44\%	+53.208	1867-69	+53.247	+0.039	Inacription cut in 1914-15.
111	"	Do.	45.3	+51/136	1867-69	$+50 \cdot 972$	-0.164	Re-conetrd., inscription cut in 1914-15.
110	"	Do.	45.5	$+52.619$	1867-69	$+52 \cdot 433$	-0.186	Ditto.
100	"	Do.	46.4	+56.454	1867-69	+56.232	-0.222	Ditto.
108	\cdots	Do.	$47 \cdot 0$	+55\%308	1867-69	$+55 \cdot 086$	-0\%22	Damaged. inscription cut in 1914-15.

TABLiE III—(contd.)-Revision levblung.
Discrepancies between the old and new heights of bench-marks.

Revision of line Bareilly-Morädābād, part of line No. 64 (Meerut-Lucknow)-concld.

107	53-L.	Bridge	47.2	+64'271	1867-69	+54.003	-0.268	Re-constrd. inscription cut in 1914-15.
106	"	Culvert	-172	+53.830	1867-69	$+53.365$	-0.465	Doubtful point.
105	"	Bridge	$48 \cdot 1$	+55.932	1867-69	$+55.431$	-0.501	Re-constrd. inscription cut in 1914-15.
104	"	Do.	485	+56.229	1867.69	+55.991	-0.238	Ditto.
102	"	Do.	$50 \cdot 6$	+65.663	1867-69	$+65 \cdot 315$	$-(1) 348$	Doubtful point. Inscription cut in 1914-15.
101	"	Do.	50.8	+58.407	1867-69	$+58.625$	+0.218	Re-constrd., inscription cut in 1914-15.
100	"	Do.	52.0	$+60 \cdot 801$	1867-69	+61\%91	+0.790	Ditto.
5	"	St. Paul's Chureh, Morendabed.	$60 \cdot 1$	+00.061	1867-69	+90.016	-0.045	

Revision of line No. 15 (Bellary-Gooty).

72	57-A.	Standard Bench. mark.	$0 \cdot 0$	$0 \cdot 000$	1907-08	$0 \cdot 000$	0'000	
73	"	Superintending Engineer's Office.	1.5	-8.810	1907-08	-8.802	+0.008	
75	"	Plinth of gate post	$1 \cdot 9$	$-31 \cdot 242$	1907-08	-31.237	+0.005	
8	"	Stone paving of drain	2.0	-40.383	1907-08	-40.378	+0.005	Originally connected in 1873-74
76	"	Railway station platform.	$2 \cdot 2$	-36.432	1907.08	--36.430	+0.002	
78	"	Stop, Mainwaring tank.	$2 \cdot 5$	$-47 \cdot 171$	1873.74	-46.876	+0.295	Disturbed.
13	"	Rock . . .	2.8	-44:288	1873-74	-44285	+0.003	

TABLE III-(concld.) - Revision levelling.
Discrepancies between the old and new heights of bench-marks.

Brichemania of the onioinal lefilhing that wehe conifhofed donise the ibvialonaty opEBATIONE.				Obebatideriget abova (+) obbelow (一) the btheting hexot-matis deteamined by			Difference in height, Hevision -Originallevelllog. The elgo + denotestlint the belght was greater and the sign le日s In 1014-16 then when originally	Brialica,
Namber.	Degree	Diecripilion.		Orlminal levelling.	Date.	Revislod, 1014-15.		
			Miles.	Feet.		Feet.	Feet.	

Revision of line No. 15 (Bellary-Gooty)-concld.

6	57-A.	Milestone	$3 \cdot 0$	-55. 980	1873-74	-55*484	-0.004	
4	"	Do.	$4 \cdot 0$	-78.772	1873-74	-78.975	-0.203	Re-constrd.
3	"	Do.	$5 \cdot 0$	--102.004	1873-74	-101.893	+0.011	
2	"	Do.	$6 \cdot 0$	-118.831	1873-74	-118.936	-0.105	Re-constrd.
42	57-E.	Do.	$9 \cdot 0$	-161.518	1873-74	$-161 \cdot 648$	-0.130	Ditto.
37	"	Do.	$12 \cdot 1$	-189.722	1873-74	$-170 \cdot 480$	-0.767	Ditin.
36	"	$\begin{aligned} & \text { Pyramidal stone, } \\ & \text { embedded. } \end{aligned}$	$12 \cdot 9$	-156.542	1873-7.1	-156.007	+0.035	
28	"	Rock .	23.5	-59.860	1873-74	-50.907	-0.047	
102	"	Platform Railway Station, Guntakal.	$35 \cdot 4$	-48.794	1907-08	-48.767	+0.027	
101	"	Well at Telegraph Office, Guntnkal.	357	-36.054	1901-08	-36.034	+0.020	
103	"	Railway Dispensary, Guntakal.	96.7	$-50 \cdot 254$	1907.08	-50.254	0.000	
105	"	Lridge Railway	$37 \cdot 0$	-102.23E	1907.08	$-102 \cdot 233$	+0.002	
106	"	Railnegy platform, Timmancherla.	$37 \cdot 3$	-109.483	1907-08	$-109 \cdot 485$	-0.002	
107	" ${ }^{\text {a }}$	Do.	37.4	$-109 \cdot 377$	1907-08	$-109 \cdot 355$	+0.022	
108	"	Embedded at Railway Station.	37.5	-110.055	1807.08	-110.061	-0.006	
24	"	Rock . . .	45.5	-256'184	1873-74	-250.225	-0.041	
20	"	North end Base line, Gooty.	83.6	-354.333	1873-7.	-353.933	$+0 \cdot 400$	New upper mark-stone.
1	"	Embedded Railway Station, Gooty.	57.6	-321.827	1907.08	-321.852	-0.025	

TABLE IV.
List of Great Trigonometrical Survey Stations connected by Spirit-levelling, season 1914-15.

Name of Station.	Hitert adote mean sea-bitrl.			Difference Old-New.	Hbuarif.
	New spirit icrelling.	Old eplrit levelliog.	Trlangula: tion.		
Janjiri T. S. (Rangir Meridional Series.)	536:481	\ldots	546:000	$+9.509$	Metal bolt fixed in markstone at ground floor.
Jamälpur T. S. (Budhon Meridional Series).	$574 \cdot 624$...	571.000	-3.624,	(O) at ground floor markstone.
Salimpur T. S. (Budhon Meridional Series).	596.918	...	597.000	+0.082	Ditto.
Godri T. S. (Sutlej Series)	379.371	$378 \cdot 992$..'	-0.379	Ditto.
Sirsa T. S. (Budhon Meridional Series).	738.655	$738 \cdot 566$..	-0.089	(O on upper mark-stone at sammit of tower.
Bhataali T. S. (Budhon Meridional Series).	$688 \cdot 441$	688.491	\cdots	+0.050	Ditto.
Fatehganj T. S. (Rangir Meridional Series).	571-263	$571 \cdot 284$	\ldots	$+0.021$	Metal bolt on mark-stone at ground floor.
Sikri T. S. (Gora Meridional Series).	296.466	...	293.000	-3.466	Upper mark-stone.
Barhgui T. B. (Gora Meridional Series).	$273 \cdot 678$	273.777	\ldots	+0.099	Ditto.
Parsia H. S. ?Chendwar Meridional Series).	1574:905	\ldots	1566.000	-8:905	Ditto.

MAGNETIC SURVEY.

No. 18 PaRTY.
(Fide Index Map No. 16.)
By Me. E. C. J. Bond.
The present report on the work of the magnetic survey in 1914-15 com-prises:-

Perbonnel.

Imperial Officers.
Captain R. H. Thomas, R.E., in charge up to 20th October 1914.
Lieutenant K. Mason, R.E., attached to 2sth October 1914.

Provincial Officers.

Mr. E.C.J. Bond, in charge from the 2lst October 1914.
Mr. H. P. D. Morton, up to 16th May 1915.
R. P. Ray, B.A.
N. R. Mazumdar.
R. B. Mathur, B.A.

Upper Subordinate Service.
Mr. B. B. Shome.
Lower Subordinate Service.
14 Computers, Recorders, etc.
4 Magnetic Observors, one of whom retired from the service on invalid pension on the 20th July 1915.
I.-The account of the work cluring the field season and in recess quarters.
II.-A note on each of the observatories.
III.-Tables of results, including :-
(a) Preliminary values of the magnetic elements at 73 repeat stations.
(b) Hourly means and diurnal inequalities of the magnetic elements at each of the four survey base stations in 1914.
An index chart showing the progress of the magnetic survey is appended.

I.-FIELD OPERATIONS AND RECESS WORK.

1. Field operations.-The field season opened on the 26th October 1914 and closed at the end of April 1915.

The field programme comprised observations for the comparisons of instruments at the four survey base stations and at Alibāg magnetic observatory, and observations at 73 repeat stations in India and Burma for the accurate determination of the secular changes of the magnetic elements.

The Port Blair repeat station which was permanently marked and observed at in previous years, was not visited this season.

Two detachments, each under a Provincial Officer, were employed on the work throughout the field season. As onc of these detachments was often delayed from the irregular steamer service along the Burma coast, it was found nccessary to send out a third detachment towards the end of the season for two months to assist in the completion of the season's programme.

The 73 repeat stations visited this season include the 22 original repeat stations, 50 selectod field stations scattered over India and Burma at distances of 100 to 200 miles apart, and a new repeat station established this season near the Barrackpore obscrvatory which was closed at the end of the season. The 50 stations referred to above were marked in 1910-11 by small masonry pillars,
with the upper surface flush with the ground, as in the case of the previously marked 22 repeat stations. It was found however that many of these pillars were lost or damaged, having been tampered with or destroyed, and since observations at the stations are to be repeated once in every five years there would be some difficulty in the future in identifying the exact position of the stations. In normal areas no sensible error would result in the magnetic elements, at any one time, from a slight change of position, but in the many magnetically disturbed areas in India and Burma the error may vary to a considerable extent, it is therefore important that the exact site is used when observations are repeated at a station to ensure that correct values of the magnetic elements are obtained for the satisfactory determination of the secular changes; for this reason, at the recommendation of the committee* appointed by the Government of India in 1914 to discuss the position of the magnetic survey, the 73 repeat stations were marked in a permanent manner this season by suitable concrete pillars, as described belom, and were handed over for preservation to the care of the local authorities so that there shall be no doubt in the future as to their exact position.

Each of the detachment officers was supplied with a collapsible wooden mould 3 feet $\times 1$ foot $\times 1$ foot in dimensions and with this the pillars were constructed without the aid of a mason in the following manner :-A hole was dug in the ground and the mould was let into the centre of the hole which corresponded with the position of the station site. Half a cubic foot of Portland cement, one cubic foot of sand and three cubic feet of rubble were then well mixed with just a sufficient quantity of water to moisten the whole and pressed into the mould; this composition was allowed to set orernight. The next morning the mould was removed and earth filled into the hollow space round the pillar and well beaten down, leaving half a foot of the pillar above the surface of the ground.

The top surface of the pillar was plastered with a mixture of cement and fine sand and the impression "G.T.s. Magnetic Station" was inscribed on it by means of an embossed plate pressed into the moist cement.

The material of which each pillar is composed was tested, before being used, to see that none of it had any magnetic properties and observations were taken at the site before and after the pillar was erected to ascertain whether any difference existed in the observed values.

Each of the 23 repeat stations originally consisted of three sites about a mile to a mile and a half distant from each other and the mean of the magnetic ralues obtained at each was used to represent the most prolable value for the mean geographical position of the three sites. No distinct advantage was however gained in observing at the three sites and to save the additional time and labour involved, it was decided to observe at one site only. The site which appeared, from the results in the past, to give the mort normal ralues for the locality was selected and this was permanently marked as already described.

The officer in charge was employed during the field season, with the assistance of the head-quarters stafl of the party, in carrying on the work of the final reduction of the field nlservations in horizontal force to the seleoted epoch and in the revision of the preliminary values of the mean maguetio declination from the additional data accumulated duriug the past few years.

[^2]3. Work during recess.-The computations of the field observations taken during the year under report and the reduction and tabulation of the magnetic elements for the four survey base stations (Dehra Dūn, Barrackpore, Kodaikanal, and Toungoo) for 1914 have been completed. The mean values of these elements for the year 1914 have been derived from measurements of all available days, excluding those of great disturbances.

The final reduction of the observations in horizontal force and declination at the repeat and field stations to the selected epoch 1909 is well in hand. The method of reduction as advised by the committee on the magnetic survey appointed by the Government of India in 1914 is being followed.

Good progress has been made with the reductions of the H. F. observations.

The revised base line values of the Dehra Dūn and Barrackpore H. F. Reduction of H. F. magnetographs have been computed from H as determined from the finally adjusted constants of the magnets of these observatories. The revised base line values of the Kodaikānal observatory are in hand. The corrected monthly mean values of H at the Dehra Dinn observatory have been plotted on a chart and the lines of uniform secular variation derived.
'The measurements of the observatories' magnetograms at the times of all the field observations have been completed.

The recomputation of the values of H at the repeat and field stations, necessitated by the revised values of m and ($1+\frac{\mathrm{P}}{r_{2}}+\frac{Q}{r 4}$ etc.) of the field magnets, is in progress.

The reduction of the declination data of the survey was well advanced, but in order that there should be uniformity Reductiou of dechination, in the method of reduction of the magnetic elements and to conform to the procedure laid down by the committee on the magnetic survey it has been necessary to recompute the declination data of the field observations ; this is now being carried on and it is estimated will take up to the end of June 191.6 to complete.

The preparation of a suitable chart of India and Burma will be taken in hand in the meantime and when the reductions are ready all that will be required is to enter the isogonals aud lines of equal secular change on it.
3. At the request of the Director of the South Kensington Meteorologicai Ofice, London, the magnetic survey party co-operated with the Australasian Antarctic Expedition in 1912 in taking simultaneous magnetic observations at the survey observatories in India and Burma, at prearranged times, to assist the expedition in the comparative study of magnetic disturbances. The results of these observations spread over a period of eight months were submitted this season in convenient form.

Magnetic data were also supplied to Commander A. Alessio of Dr. F. DeFilippi's Expedition for the fival reduction of the magnetic observations taken by the expedition in the-Karakoram and Cbinese Turkistan.
4. Programme for 1915-16.—During the ensuing field season one detachment will take the field for about two months, under the officer in charge, to inspect the magnetic observatories and to take the usual observations for the comparisons of instruments at the observatories.

All the members of the party will be employed throughout the season on the reduction of the survey to the selected epoch.

> II.-THE OBSERVATORIES IN 1g14-15.
A.-Drfra Don Observatory.

1. The observatory remained in charge of the Magnetic Observer, Babu Sri Dhar, throughout the year.

The H. F. and declination magnetographs have worked satisfactorily during the year.

There has been some improvement in the V. F. instrument by the replacement of the agate plane by a new one but it has not been working quite as. satisfactorily as might have been expected. An attempt will be made during the winter to substitute the magnet system of the Barrackpore V. F. instrument which is available since the Barrackpore observatory has been closed.

The V. F. lamp has given trouble by frequently becoming dim at night and there has in consequence been a loss of trace on several occasions. The fanlt appears to lie in the wick being too big for the small burner of the lamp and since there is a deficiency of oxygen in the underground room to feed the light the wick becomes charred and the light fails. The observer has to trim and adjust the wick very frequently but in spite of this the lamp often smokes and the light goes out.

The Officer in clarge of the Mathematical Instrument Office, Calcutta, has been asked to have a burner made with a small opening for a round wick and to adapt it to take a tube shaped chimney : this alteration in the burner it is hoped will overcome the difficulty.

In May 1912 the inner and outer walls of the underground ronm were plastered with cement to prevent the percolation of water. This is the first year of heavy rain siuce the plastering was done aud it is satisfactory to oote that though there has been an accumulation of five feet of water above the outlet pipe in the open pit, the cement plastering has been successful in preventing the percolation of water into the room.
2. Mear values of declination and H. F. constants.-The table below gives the mean monthly values of magnetic collimation, the distribution co-efficients P_{1-3} and P_{2-3} and the observed values of m of the observatory magnet used in the computations for 1914. The values of m given in the table are all determined by using the chronograph for the vibration observations.

Mean values of the Constants of Magnet No. 17 in 1914.

Mean values of the Constants of Magnet No. 17 in 1914.

3. Mean base line values.-The table below gives the mean monthly observed and accepted values of the H. F. and declination hase lines; the accepted values have been used to compute the values of these elements for 1914.

Base line values of Magnetographs in 1914.

Baxe line values of Magnetographs in 1914.

4. Mean scale values and tentperature range. -The mean scale values for 1914 for an ordinate of $\frac{1}{25}$ inch were as follows:-
H. F. $4 \cdot 47 \%$.

Decl. 1.03 minutes.
V. F. 4.52 to 6.07γ.

The mean temperature for the year was $27^{\circ} \mathrm{C}$ with maximum and minimum monthly values of $27^{\circ} 1 \mathrm{C}$ and $26^{\circ} 9 \mathrm{C}$. The temperature of reduction is $27^{\circ} \mathrm{C}$.
5. Mean monthly values and secular changes.-The following table shows the monthly mean values of the magnetic elements for 1913 and 1914 and the secular changes during that period.

Secular changes at Dehra Dün in 1913-1914.

B.-Barraokpore Obgervatory.

1. The observatory remained in charge of Magnetic Observer K. N. Mukharji, M.A., up to the 25th April, after which date he was transferred to the head-quarters office of the party at Dehra Dün.

The declination and H. F. magnetographs worked well during the year. The V. F. magnetograph gave more satisfactory results than is usual with this class of instrument.
2. Mean values of declination and H. F. constants.-The following table gives the monthly mean values of magnetic collimation, the distribution co-efficients $P_{1.2}$ and $P_{2 . s}$ and the moment m of the observatory magnet in 1914.

The moment of the magnet has been constant throughout the year.
Mean values of the Constauts of Magnet No. 20 in 1914.

Молтев.			h. f. constants.					Remaria.	
			Mzat raturs osm.						
		\mathbf{P}_{1-2}	P_{2-3}	Accepted P $\mathrm{P}_{1.2}$	$\underset{\substack{\text { Minutbly } \\ \text { meali, } \\ \text { mil, }}}{ }$	$\begin{aligned} & \text { Acceppted } \\ & \mathrm{n} \text {. } \end{aligned}$			
Jenuary	- .		-7:30	6.73	$7 \cdot 41$		937. 22	7	
February	. .		-7:29	$5 \cdot 61$	7.73		93715		
Marcl .	. .	-7: 22	6.74	$7 \cdot 46$		$937.0{ }^{\prime}$			
April		-7:25	6.65	7.35	号	93714			
May	-	-7:24	$0 \cdot 71$	7.45	\%	93714			
June	. \cdot	-7:23	6.61	7.39	号	$937 \cdot 16$			
July	.	-7:28	6.70	$7 \cdot 52$		937.22	${ }^{937 \cdot 21}$		
Augast.	. \cdot	-7: 26	6.68	7.50		937.22			
Septeuber	. \cdot	-7:25	6.61	7.59		$937 \cdot 12$			
October	.	-7:25	6.59	7.56		$937.0 \pm$			
Novernber		-7:25	6.58	$7 \cdot 41$		93714			
December	. .	-7:23	6.59	\%.27		$\begin{gathered} 937 \cdot 22 \\ 937 \cdot 21 \end{gathered}$		lironograph.	

3. Mean values of Base Lines.-The table below gives the mean monthly observed and accepted base line values of the declination and H. F. instrumeuts; the accepted values have been used to compute the values of these elements for 1914.

Base line valucs of Magnetographs in 1914.

- Base line valucs of Magnetographs in 1914.

4. Mean scale values and temperature range.-The mean scale values for the year for an ordinate of $\frac{1}{25}$ inch were:-
H. F. $4 \cdot 86$

Decl. $1 \cdot 03$ minates.
V. F. $4 \cdot 63 \mathrm{y}$ up to the end of May.
$4 \cdot 44 y$ from the lst June.
The mean temperature for the year was $31^{\circ} 8 \mathrm{C}$ with maximum and minimom monthly values of $33^{\circ} 2$ and $30^{\circ} \cdot 2 \mathrm{C}$. The temperature of reduction is $31^{\circ} 0 \mathrm{C}$.
5. Mean monthly values and secular changes.-The following table gives the monthly mear values of the magnetic elements for 1913 and 1914 and the secular cbanges during that period.

Secular changes at Barrackpore in 1913-14.

6. The committee which assembled in March 1914 to discuss the position

Closing of the Barrackpore Observatory. of the magnetic survey and to advise as to its future programme were of opinion that the maintenance of the observatories of Dehra Dūn, Kodaikānal, Toungoo and Alibäg in continuous operation should give adequate data for determining the
magnetic elements at any time at any place in India, and that the Barrackpore observatory might therefore be closed. On the 26th April 1915 observations at this observatory were discontinued after the repeat stations, whose values are dependent on the Barrackpore observatory for disturbance corrections, had been permanently marked and observations at them completed. The magnetngraphs were then Wsmantled by the officer in charge and the buildings raade over to the Bengal Public Works Department on the 3rd May 1915.

All the instruments, furniture etc., of the observatory were sent to Dehra Dūn to be stored away at the head-quarters of the party.

This observatory was built in July 1903. The declination and horizontal force magnetographs were installed in August of the same year and the vertical force magnetograph in April 1907. These instruments have been in operation up to the 25th April 1915.

> C.-Toungoo Obsertatory.

1. Mr. B. B. Shome held charge of the observatory throughout the year.

The H. F. and declination magnetographs have worked well throughout the year ; the V.F. magnetograph behaved as well as could be expected of this class of instrument.
2. Mean values of declination and H. F. constants.-The table below gives the monthly mean values of magnetic collimation, the distribution co-efficients $\mathrm{P}_{1.2}$ and $\mathrm{P}_{2 . s}$ and the magnetic moment m of the observatory magnet in 1914.

The normal fall of the moment of the magnet has previously been 2.0 C. G. S. per annum as mentioned in last year's report. The fall during this year has been 1.0 C . G. S.; this is still much higher than the average normal fall of the other observatory magnets.

Mean calues of the Constants of Magnet No. 19 A in 1914.

3. Mean base line values.-The following table gives the mean monthly observed and accepted base line values of the declination and H. F. magnetographs; the accepted values have been used to compute the values of these elements for 1914.

The observed values of the H. F. base line in this table have been corrected to reduce them to the value of Magnet No. 19, which was in use in the earlier years of the observatory.

Base line values of Magnetographs in 1914.

4. Mean scale values and temperature range.-The mean scale values throughout the year for an ordinate of $\frac{1}{25}$ inch were :-
H. F. $5 \cdot 39 \gamma$.

Decl. 1.02 minutes.
V. F. $5 \cdot 65 \%$.

The mean temperature for the year was $89^{\circ} \mathrm{F}$. with maximum and minimum monthly values of $89^{\circ} \cdot 3 \mathrm{~F}$ and $88^{\circ} 6 \mathrm{~F}$. The temperature of reduction is $89^{\circ} \mathrm{F}$.
5. Mean monthly values and secular changes.-The annexed table gives the mean monthly values of H. F. and V. F. for 1912 and 1914, the declination and dip for 1913 and 1914 and the secular changes during those periods. The values of H. F. in 1913 were unsatisfactory and appear to lave been
affected by variable personal errors, these have therefore not been used in the tables in deriving the secular changes for the year for H. F. and V. F.

Sccular changes at Toungoo in 1912-14.

D.-Kodaikãnal Observatory.

1. Magnetic Observer Ramasvami Ayyangar held charge of the observatory for about $10 \frac{1}{2}$ months of the year and during his absence on leave, from lst October to 20th November 1914, Computer Abdul Majid was in charge.

Thanks are due to the Director of the Solar Physics Observatory for cordial assistance in all matters connected with the masnetic work.

The magnetographs worked satisfactorily throughout the year.
2. Mean values of declination and H. F. constants.-The table below gives the mean observed monthly values of magnetic collimation, the distribution co-efficients P_{1-2} and $P_{2.9}$ and the observed and accepted values of the magnetic moment m of the observatory magnet, used in the computations of 1914.

All the values of m were determined by using the chronograph for the vibration observations.

Mean values of the Constants of Maynet No. 16 in 1914.

3. Mean base line values.-The following table gives the mean monthly observed and accepted base line values of the H. F. and declination magnetographs ; the accepted values have been used to compute the values of these two elements for 1914.

Base line ralucs of Magnetographs in 1914.

4. Mean scale values and temperature range.-The mean scale values for the year for an ordinate of $\frac{1}{25}$ inch were :-

> H. F. 6.01 to 10 hours on 16th April 1914. 5.93γ from 11 hours ditto.

Decl. 1.03 minutes.
V. F. $4 \cdot 80 \gamma$ to $5 \cdot 46 \gamma$.

The mean temperature for the year was $18^{\circ} \cdot 1 \mathrm{C}$ with maximum and minimum monthly values of $18^{\circ} \cdot 7 \mathrm{C}$. and $17^{\circ} \cdot 1 \mathrm{C}$. The temperature of reduction is $19^{\circ} \mathrm{C}$.
5. Mean monthly values and seculur changes.-The table below gives the mean monthly values of the magnetic elements for 1913 and 1914 and the secular changes during that period.

Scoular changes at Kodaitianal in 1913-14.

III.-TABLES OF RESULTS.

A. Mean values of the magnetic elements at the observatories for 1914
B. Classification of curves and dates of magnetic disturbances in 1914.
C. Tables of results al Dehra Dün.
$\begin{array}{llll}\text { D. } & \text { " } & \text { " } & \text { " Barrackpore. } \\ \text { L. } & \text { " } & \text { " } & \text { " Toungoo. } \\ \text { P. } & \text { " } & \text { " Kodaikăual. }\end{array}$

For each observatory the following tables are given :-
(a) Hourly means (corrected for temperature) of declination, H. F., V. F., and dip from all available days.
(b) Diurnal inequality deduced from (a).
G. I'reliminary values of the marnetic elements at repeat stations in 1914-15.
A.-Mean values of the magnetic elements at observatories for 1914.

C. -Tables of resulls at Dehra $\bar{D}_{\tilde{u}}$.
Hourly Means of the Declinudion us determined at Dehra Dūn from all available days in 1914.

Hoars.	Mid.	1	2	3	4	5	${ }^{6}$	7	8	\bigcirc	10	11	Noon.	${ }^{13}$	14	15	16	17	18	19	20	${ }^{21}$	22	${ }^{23}$	Mid	Means
E 20+ ${ }^{\text {a }}$																										
${\underset{M o n t h a}{1914} .}^{191}$,	
January	20.4	$20 \cdot 4$	203	202	$20 \cdot 1$	200	$19 \cdot 8$	19 s	20.0	20:1	20.4	$19 \cdot 8$	$18 \cdot 6$	20.1	20.s	21.2	, 20.8	$20 \cdot 4$	$20 \cdot 3$							
February	20.3	20.4	1	$\because 03$	20.2	20.2	200	$\because 0$.	20.1	20.2	20.0	19.5	18.2	193	20.1	20.7	[21.0	$20 \cdot 6$	$20 \cdot 3$	20.3	$20 \cdot 3$	20.2				
Maroh	20.1	200	200	190	200	190	19:	20.2	21.1	21.8	$21 \cdot 5$.203	18.0	18.0	18.0	18.8	197	20.0	19.9	198	197	19.8	199	20.0	20.0	$19 \cdot 9$
Octuber	18.1	18.0	17.9	17.8	17.9	179	17:	15:6	19\%	19.5	1s's	17.3	16.	$15 \cdot 8$	165	17.7	183	18-2	178	17.8	17.8	17.8	18.0	18.1	$18 \cdot 1$	17.9
November	179	17 \%	17%	17.5	17.3	17%	17.1	173	17	183	130)	17.2'	18.7	16.8	$17 \cdot 1$	17.5	17.8	17\%	17.9	17.9	$17 \cdot 8$	17.8	$17 \cdot$	17.9	17.9	$17 \cdot 6$
December	17.1	17.3	17.1	120	16:	16.7	16\%	183	16.6	17%	18.0	$17 \cdot 5$	169	$16 \cdot 8$	11.7	16.7	16:)	$17 \cdot 1$	$17 \cdot 1$	$17 \cdot 2$	17.2	17.2	17.4.	$17 \cdot 3$	17.5	$17 \cdot 1$
Means	190	190)	18:	18.3	18.7	187	18\%	18:7	193	196	19.5	18.6	179	178	182	18.8	19.1	19.0	18.9	189	1s9	18.9	190	190	19.	18.8
Summer.																										
April	20.0	199	19.9	198	$19 \cdot 8$	19.8	20.0	21.0	290	22.1	20.8	189	17.0	172	174	18.1	18.8	$19 \cdot 3$	193	193	194	10.6	19.8	19.9	20.0	19.6
May	194	19.5	19\%	195	194	196	20.5	21.6	22.0	$21 \cdot 3$	198	17.8	16.5	$18 \cdot 1$	16.4	$17 \cdot 3$	18.2	180	$19 \cdot 0$	18.7	18.7	$18 \cdot 9$	$19 \cdot 1$	193	19.4	19.0
June	19.1	193	193	19.1	19.1	19.6	$20 \cdot 6$	21.6	21.7	$20 \cdot 8$	19.2	17.4	$16 \cdot 3$	180	16.1	16.8	17.5	$18 \cdot 3$	18.6	18.5	18.5	18.5	18.8	$18 \cdot 9$	19.1	18.8
July	18.8	189	19.1	19.1	192	195	20.7	21.6	21.5	20.6	$19 \cdot 1$	173	16.2	157	15.9	16.4	17.2	18.0	18.5	18.4	183	18.4	$18 \cdot 5$	$18 \cdot 7$	$18 \cdot 8$	$18 \cdot 6$
August	18.7	189	189	9.0	19.1	191	20.7	21.8	22.0	20.8	18.7	16.6	155	$15 \cdot 4$	15.9	17.0	18.1	18.8	191	186	18.5	18.5	18.7	18.7	18.8	$18 \cdot 6$
September	18.7	18.7	18:	189	19.0	19.1	198	21.0	21.5	205	183	16.2	151	15.1	16.2	17.5	18.6	18.8	18.5	18.4	18.4	18.5	18.5	186	18.7	$18 \cdot 5$
Means	101	19.2	193	193	193	195	20.1	21.4	218	21.0	19.	17.1	16%	18.0	16.3	17.2	18.1	18.7	18.8	18.7	18.6	18.7	18.9	19.0	19.1	18.8

Diurnal Inequality of the Declination at Dehra Dün as deduced frome the preceding Tiable.

Hoars.	Mid.	1	2	3	4 5	6	7	s	9	10	11	Noon.	13 !	14	15	16	17	18	19	20	21	22	23	Mid.
Winter.																								
$\begin{gathered} \text { 1911 } \\ \text { Months. } \end{gathered}$,	,		,		,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	
January	+0.1	$+0.1$	0	-0.1	$-0.2-0.3$	-0.5	-0.5	-0.3	+0.1	$+0.1$	-0.5	-0.7	-0.2	+0.5	$+0 \cdot 9$	+0.5	+0.1	+0.1	+0.1	$+0.1$	+0.1	+0.1	+0.1	$+0 \cdot 1$
February	- +0.1	$+0.2$	$+0 \cdot 2$	+0.1	0	-0.2	-0.2	-0.1	0	-0.2	-0.7	-1.0	-0.9	-0.1	$+0.5$	+0.8	+0.4	$+0.1$	$+0.1$	$+0.1$	+0.1	+0.1	+0.1	$+0 \cdot 1$
March	+0.1	+0.1	+0.1	0	$+0 \cdot 1$	0	+0.3	+1:5	$+1 \cdot 9$	+16	+0.4	-1.0	$-1 \cdot 9$	-1.9	$-1 \cdot 1$	-0.2	$+0 \cdot 1$	0	-0.1	-0.2	-0.1	0	$+0 \cdot 1$	$+0 \cdot 1$
October	+0.2	+0.1	0	-0.1	0	0	+0.7	+1.6	+16	+0.0	-0.6	-19	$-2 \cdot 1$	$-1 \cdot 4$	-0.2	+0.4	+0.3	-0.1	-0.1	-0.1	-0.1	+0.1	+0.2	+0.2
November	+0.3	+0.2	+0.1	-0.1	-0.3 -0.3	-0.5	-0:3	$+0.3$	$+107$	+0.4	-0.1	-0.9	-0.8	-0.5	-0.1	$+0 \cdot 2$	+0.2	+0.3	+0.3	+0.2	+0.2	+0.3	+0.3	+03
December	+0.3	+0.2	0	$\rightarrow 0.1$	$\begin{aligned} & -0.2\end{aligned}-0.1$	-0.6	-0.8	-0.5	+0.4	+0.9	$+0.4$	-0.2	--0.3	-0.4	-0.4	-0.2	0	0	+0.1	+0.1	+0.1	+0.3	+0.2	+0.4
Means	+0.2	$+0.2$	$+0 \cdot 1$	0	-0.1 -0.1	-0.3	-0.1	$+0.5$	+0.8	+0.7	-02	-0.0	-10	-0.6	0	$+0.3$	+0.2	+0.1	+0.1	+0.1	+0.1	+0.2	+0.2	+02

Hourly, Mrans "f horizontal Force in C. G. S. units (Corrected for temperature) at Dchra Dūn from all available dnys in 1914.

Diurnal Incquality of the Horizontal Force at Dehra Dūn as delluced from the preceding Table.

Hoare.	${ }^{\text {mid }}$.	1	${ }^{2}$	${ }^{3}$	4	5		7	${ }^{8}$	-	10	11	\| Noon .	${ }^{13}$	${ }^{14}$	15	${ }^{16}$	17	18	${ }^{10}$	${ }^{20}$.	${ }^{21}$	${ }^{22}$	${ }^{23}$	mid.
Winter.																									
${ }_{\text {len }}^{1914}$ Mouth.	γ	γ	γ	r	7	r	r	γ	γ	γ	γ		${ }^{1}$	γ	γ	r	γ	γ	γ	γ	γ	7	r	r	γ
Jonara	-5	-4	-4	-3	-3	-3	-1	+3	+	+5	+4		- +13	+14	+9	+4.	0	-4	-4.	-5	-6	${ }^{-6}$	-7	-6	--5
Februars	-6	-5	-4	-3	-4	-4	-2	-2	-1	+2	+4	+11	+16	+17	+13	+8	+1	-3	-5	-6	-9	\rightarrow	${ }^{-9}$	-7	-6
March	-2	-3	${ }^{-3}$	-2	-2	-1	0	-3	-2	0	${ }_{+}+$		${ }^{7}+8$	+10	+9	+4	-1	-4	-	-4	-4	-2	-4	-4	-2
October	-2	-1	-1	+1	0	+1	+1	+2	${ }^{-4}$	-7	-4		$5{ }^{+10}$	+12	+10	+3	-3	-4	-4	-5	-4	-3	-3	0	0
Norember	-4	-	-3	-2	0	0	+2	+	+ 7	+6	+6		8 +0	+6	+2	-1	-3	-3	-7	-9	-9	\rightarrow	-5	-5	-4
December	-6	-5	-3	-3	-2	-1	+1	+5	+10	+12	+11		+10 +6	+1	-3	-3	-2	-2	-2	-1	-2	-4	-5	-3	${ }^{-6}$
Means	-4	-3	${ }^{-3}$	-2	-1	-1	+1	+2	+3	+3	+5		${ }^{9} \mid+11$	+10	+7	+3	-1	-3	- 4	-5	-5	-5	-5	-4	-3

April	${ }^{-5}$	-3	-3	-1	-1	-1	+1	0	-5	-4	-2	+4	+11	+15	+14	+11	+	0	-3	-	-5	-4	-4	4	-4
May $^{\text {a }}$	-2	-4	-2	-2	-2	-2	0	-4	-8	-	-4	+4	+11	+14	+12	+9	+5	-1	-4	-5	-5	-4	-4	-4	-2
Jane	--1	0	-1	-1	-2	-1	-1	-1	-3	-4	+1	+6	+11	+12	+10	+6	+1	-4	${ }_{-4}$	-4	-5	-3	-2	0	-1
Jal_{5}	+1	0	0	0	-1	0	+1	+1	-2	-4	-3	0	+1	+0	+8	+6	+1	-3	-6	-7	-4	-3	-2	0	+1
guet	+1	+1	+1	+1	+1	+2	+3	-2	-6	-s	-6	-1	+6	+9	+8	+8	+5	-2	-6	-6	-3	-1	-1	-1	+1
September	+2	+1	+2	+2	+2	+3	+2	-4	-11	-13	-12	-1	+6	+13	${ }^{+1}$	+9	+3	-1	-4	-5	\square	-3	-	0	+2
Menss	0	0	0	0	0	+1	+1	--1	-5	-7	-4	+2	+9	+12	+11	+9		-1	-	-5	-1	-3	-2	-1	0

Hourly Means of Tertical Force in C．G．S．Unils（Corrected for temperature）at Dehra Dün from all availuble days in 1914.

Houn．	mid．		${ }^{3}$	${ }^{3}$	4	5	6	7	${ }^{8}$	9	10	11	Noon．	13		${ }^{14}$	${ }^{15}$	16	17	${ }^{18}$		19	${ }^{20}$	${ }^{21}$		22	23	mid．	Mens．
32000 c．g．s．+																													
										γ	γ		γ	γ		γ	γ	γ	γ			\％	γ		γ		γ	γ	γ
Janary	1113	404	403	403	40：3	1103	403	1103	404	103	401	388	102	2 40．		405	105	103	402			403	10.	，	4	104	40.	10.4	403
Febraary	${ }^{14}$	413	114	113	113	412	112	112	413	412	114	410	110	0		${ }_{4} 14$	415	${ }_{4} 13$	412	2 41		412	${ }^{11}$		${ }^{13}$	${ }^{41.4}$	$41+$	${ }^{12}$	${ }^{13}$
March	423	42	42	422	429	42	421	42	： 425	422	416	408	408	－ 408		115	419	421	421	1.12	${ }^{21}$	${ }^{421}$	422		122	422	${ }^{423}$	423	420
October	499	459	459	489	1.19	189	189	492		189	485	180	478			186	439	190	489	－ 48	89	490	490			491	． 91	490	488
November	492	491	491	491	491	491	491		2． 193	190	486	484	485	487		189	492	193	493	3.19	${ }^{93}$	493	49．1．		194	484	494	493	491
Deember	${ }^{497}$	${ }^{49}$	497	497	497	197	497	497	＋ 198	498	496	493	483	193		${ }^{193}$	496	198	488	8		498	498		197	497	498	497	497
Measo	153	433	${ }_{153}$	${ }^{153}$	453	453	452	453	454	${ }^{52}$	${ }^{49}$	448	446	418		150	153	153	${ }^{153}$		153	${ }^{63}$	45		15	454	15．	45.	52

	$\stackrel{\square}{\text { ¢ }}$
	$\stackrel{\text { \％}}{\sim}$
	\％
	$\stackrel{\square}{\square}$
	\％
	$\stackrel{\square}{\square}$
	荈
	8
	$\stackrel{\square}{6}$
	\％
	\％
筞等草骂与腎	8
	䓪
	$\stackrel{\sim}{4}$
	算
	$\stackrel{0}{9}$
	$\stackrel{\square}{\square}$
	$\stackrel{\square}{7}$
	\％
	缶
	$\stackrel{\square}{\square}$
	管
	－
	E
	－
	咸

Diurnal Inequality of the Vertical Force at Dehra Dūn as deduced from the preceding Table.

Hoars.	Mid.	1	2	3	4	5	6	7	8	9	10		Noon.	13	14	15	16	17	18	19	20	21	22	3	Mid.
Winter.																									
1914																									
Months.	γ	γ	7	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	γ	$\boldsymbol{\gamma}$	γ	γ	$\boldsymbol{\gamma}$		γ	7	γ	γ	\boldsymbol{r}	γ	γ						
January .	0	+1	0	0	0	0	0	0	+1	0	-2	-5	-1	+1	+2	+2	0	-1	+1	0	+1	+1	+1	+1	+1
February	+1	0	+1	0	0	-1	-1	-1	0	-1	-3	-3	-3	0	+1	+2	0	-1	-1	-1	0	0	+1	+1	+1
March .	+3	+2	+2	+2	+2	+2	+1	+4	+5	+2	- 4	-12	-1.1	-11	-5	-1	+1	+1	+1	+1	+2	+2	+2	+3	+3
Octoler	+1	+1	+1	+1	+1	+1	+1	+1	+5	+1	-3	-8	-10	-7	-2	+1	+2	+1	+1	+2	+2	+2	+3	+3	+2
November	+1	0	0	0	0	0	0	+1	+2		-5	-7	-6	-4	-2	+1	$+2$	+2	+ ${ }^{+}$	$+2$	+3	+3	+3	+3	$+2$
December	0	0	0	0	0	0	0	0	+1				-4	-4	-4	-1	+1	+1	+1	+1	+1	0	0	+1	0
Means	+1	+1	+1	+1	+1	0	0	+1	+2		-3			-4	--2	+1	+1	+1	+1	+1	+	+1	+2	+2	+2

Summer.																									
April . . .	+3	+3	+3	+3	+2	+2	+4	+6	+4	-2	-10	-15	-13	-0	-5	-1	0	+2	+1	+1	+2	+3	+4	+4	+4
May . . .	+5	+4	$+4$	+4	+4	+5	+8	+7	+3	-4	-11	-15	-13	-9	-6	-1	+2	+3	+2	+2	+3	+ +	+5	+4	+5
June . . .	+4	+ 4	+3	+3	+3	+5	+8	+7	+1	--6	-12	-17	-1.4	-11	-7	-3	+1	+3	+3	+3	+3	+4	+5	+5	+4
July . . .	+4	+4	+4	+4	+4	+6	+9	+7	+3	-3	-10	-17	-15	-11	-9	-3	+1	+4	+3	+2	+4	+5	+5	+6	+5
August . -	+5	+5	+4	+4	+4	+5	+8	+7	+3	-4	-9	-14	-14	-10	-5	-1	+1	+2	+3	+1	+3	+ 4	+4	+4	+4
September	+2	+2	+2	+2	+2	+2	+4	+5	+3	-3	-10	-14	-11	-5	-1	+2	+3	+1	0	+1	+2	+3	+3	+3	+3
Means . .	+3	+3	+3	+3	+3	+4	+6	+6	+2	-4	-11	-13	-1.1	-10	-i	-2	+1	+2	+2	+1	+2	+3	+4	+4	+4

Hourly Means of the Dip as determined at Dehra Dün from all available days in 1914.

Hours.	Mid.	1	2	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	13	20		22	23	Mid.	Meane.
N $44^{\circ}+\quad$ Winter.																										
191.6 Monthe.	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,
Janaary	10.7	$19 \cdot 7$	197	$19 \cdot 6$	19.6	19.6	19.5	103	19.2	$19 \cdot 2$	$19 \cdot 1$	18.7	$18 \cdot 7$	$18 \cdot 8$	$19 \cdot 1$	$19 \cdot 3$	$19 \cdot 4$	$19 \cdot 6$	18.7	19.7	19.8	19.8	$10 \cdot 8$	19.8	$19 \cdot 8$:19.4
February	2) 3	$20 \cdot 3$	20.2	$20 \cdot 1$	20.1	$20 \cdot 1$	20.0	20.0	20.0	19.8	19.6	19.2	$18 \cdot 8$	19.0	$19 \cdot 3$	19.6	$19 \cdot 9$	20.0	20.2	$20 \cdot 2$	$20 \cdot 4$	$20 \cdot 3$	20.4	20.3	$20 \cdot 3$	19.9
March	20.7	20.7	30.7	807	20.7	$20 \cdot 6$	20.5	$20 \cdot 8$	20.8	206	19.9	$19 \cdot 1$	$18 \cdot 3$	$10 \cdot 4$	19.7	20.2	$20 \cdot 6$	20.7	20.7	20.7	$20 \cdot 8$	20.7	$20 \cdot 8$	$20 \cdot 8$	20.7	20.4
October	25.3	353	25.3	25	35%	$25 \cdot 2$	$25 \cdot 2$	25.3	25.7	25.6	$\underline{25.2}$	24.5	24.2	9.4 .2	$24 \cdot 6$	25.1	25.5	$25 \cdot 5$	25.5	$25 \cdot 5$	$25 \cdot 5$	25.5	$25 \cdot 5$	$25 \cdot 3$	$25 \cdot 3$	$25 \cdot 2$
November	26.0	25.0	25.9	25.8	25.7	057	$25 \cdot 6$	25.6	$25 \cdot 5$	$25 \cdot 3$	25.1	$24 \cdot 8$	2.49	25.2	25.5	$25 \cdot 8$	26.0	26.0	26.2	$26 \cdot 3$	26.3	26.2	$26 \cdot 1$	28.1	26.0	25.7
December	20.4	20.3	26	$26 \cdot 2$	$26 \cdot 2$	26.1	26.0	25.8	25.6	25.5	25.5	$25 \cdot 3$	23.5	25.8	26.0	26.2	$26 \cdot 3$	26.3	26.3	26.2	$26 \cdot 3$	$26 \cdot 3$	$26 \cdot 3$	$26 \cdot 3$	26.4	26.0
Means	23.1	23.0	23.0	22.9	$22 \cdot 0$	$22 \cdot 9$	$23 \cdot 5$	29•8	23.8	22.7	$22 \cdot 1$	22.0	$21 \cdot 9$	$22 \cdot 1$	$22 \cdot 4$	22.7	23.0	23.0	$23 \cdot 1$	23.1	$23 \cdot 2$	$23 \cdot 1$	23.2	$23 \cdot 1$	$23 \cdot 1$	$22 \cdot 8$

Diurnal Inequality of the Dip at Delra Dīn as deduced from the preceding Table.

Hoare.	Mid.		2	3	4	5	6	7	8	9	10	11	Noon. 13	14	15	16	17	18	19	$\because 0$		22	23	Mid.
Winter.																								
1014 Months.	,				,	,	,	,	,	,	,	,	! ,	,	,	,	,	,	,			,	,	,
Janary	. +0.3	$+0 \cdot 3$	$+0.3$	+0.2	$+0 \cdot 2$	$+0 \cdot 2$	$+0 \cdot 1$	-0.1	$-0 \cdot 2$	$-0 \cdot 2$	- 3	-0.7	-0.7	$-0 \cdot 3$	$-.0 .1$	0	+0.2	$+0.3$	+0.3	+0.4	$+0 \cdot 4$	+0.4	+0.4	+0.4
F'ebruary	. $+0 \cdot 4$	$+0 \cdot 3$	$+0.3$	+0.2	$+0 \cdot 2$	+0.2	$+0 \cdot 1$	$+0 \cdot 1$	$+0 \cdot 1$	$-0 \cdot 1$	-173	-1) 7	$-1.0-0.9$	-0.6	-0.3	0	+0.1	$+0.3$	$+0 \cdot 3$	+05	+1). 4	+0.5	+0.4	+0.4
March	. +0.3	+0.3	$+0.3$	$+0 \cdot 3$	$+0.3$	+0.2	+0.1	+0.1	+0.4	$+0 \div$	-15	-- $1 \cdot 0$	$--1 \cdot 1,-1 \cdot 0$	-0.7	-0.2	+0.2	$+0.3$	+10:3	+0.3	+0.1	+0.3	+0.4	+0.1	+0.3
October	. +0.1	+0.1	$+0 \cdot 1$	0	$+0 \cdot 1$	0	0	$+0 \cdot 1$	$+0.5$	+0.4	0	-0.7	$-1.0-1.0$	-0.6	-0.1	+0.3	$+0.3$	$+0 \cdot 3$	$+0.3$	+0.3	+0.3	$+0.3$	+0.1	+0.1
November	. +0.3	+0.2	+0.2	$+0 \cdot 1$	0	u	--0.1	-0.1	-0:2	-0. 1.	-	-08	-0.8 -0.5	$-0 \cdot 2$	+0.1	$+0 \cdot 3$	+0.3	+0.5	$+0.6$	$+0.6$	+ 0.5	+0.4	+0.4	$+0.3$
Decemiber	. $+0 \cdot 1$	$+0.3$	+0.2	$+0.2$	$+9 \cdot 2$	$+0 \cdot 1$	0	$-0 \cdot 2$	-0.4	-0.5	-15	\cdots	$-0.5:-0.2$	0	$+0 \cdot 2$	$+0 \cdot 3$	$+0 \cdot 3$	+0.3	+02	+0.3	+0.3	+0.3	$+0.3$	$+0 \cdot 4$
- Means	. +0.3	$+0 \cdot 2$	$+0.2$	$+0 \cdot 1$	$+0 \cdot 1$	$+0 \cdot 1$	0	0	0	-0.1	-0.4	-0.8	$-0.9-0.7$	-0.4	-0.1	+0.2	+0.2	+0.3	+0.3	+0.4	+0.3	+0.4	$+0.3$	+0.3

D.- Tables of resuits at Rarrackipore.

Houra	Mid.	1	3	3	4	5	${ }^{\text {© }}$	7	8	9	10	11	Nuon.	13	14	15	16	17	18	19	20	21	22	23	Mid.	Mesan.
$\mathbf{E} 0^{\text { }}+\mathrm{W}$																										
$\begin{gathered} 191,5 \\ \text { Months. } \end{gathered}$,	,				,				,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	
January	3.6	$3 \cdot 16$	3.65	31.4	31:2	$3 \cdot 4 \cdot 2$	33.9	33.7	31.1	3.7	31. 8	31.2	3.6	346	$35 \cdot 2$	$35 \cdot 4$	$35 \cdot 4$	34.9	$34 \cdot 6$	34.6	$34 \cdot 6$	$34 \cdot 6$	$34 \cdot 6$	34.6	$34 \cdot 6$	$34 \cdot 6$
Febraary	3.61	$3 \cdot 2$	$34 \cdot 2$	3.42	3.11	$3 \cdot \mathrm{~b} 1$	33.9	33.)	34.0	33.9	33.7	33.3	33.3	34.0	34.6	$35 \cdot 1$	35.2	34.7	$34 \cdot 1$	34.2	34.2	34-1	$34 \cdot 1$	34.1	3.41	$34 \cdot 1$
March	339	33.9	33.0	$33 \cdot 5$	33.8	33.8	33.7	3.4-2	35.1	$35 \cdot 4$	35.2	33.7	32.8	32.1	32.6	$33 \cdot 2$	34.0	34.1	$33 \cdot 9$	$33 \cdot 8$	$33 \cdot 8$	$33 \cdot 8$	33.8	$33 \cdot 9$	33.9	$33 \cdot 8$
Notober	30.7	3107	$30 \cdot 6$	206	305	30.5	$30 \cdot 6$	31.6	$32 \cdot 7$	32.6	31.1	29.8	$28 \cdot 0$	20.0	30.0	30.8	31.3	$30 \cdot 9$	$30 \cdot 6$	307	30.7					
Novarmber	3103	310:3	30%	31.1	300	298	28.7	29.8	$30 \cdot 6$	$30 \cdot 8$	$30 \cdot 6$	299	297	30.0	30\%	30.4	$30 \cdot 6$	30.5	$30 \cdot 4$	$30 \cdot 4$	$30 \cdot 3$	30%	$30 \cdot 2$	30.2	303	30.2
December	29.7	298	296	295	$29 \cdot 3$	29.2	28.9	$28 \cdot 6$	29	$30 \cdot 2$	$30 \cdot 8$	30%	20.8	29.1	294	29.4	29.6	$20 \cdot 8$	$29 \cdot 8$	29.8	29.7	29.7	29.7	29.7	29.7	296
Means	$32 \times$	32:3	32.2	$33 \cdot 1$	33.0)	31:9	$31 \cdot 8$	32.0	$3 \% 6$	$32 \cdot 8$	32:8	31.9	31.5	31.5	320	$32 \cdot 4$	32.7	32.5	32.2	32.2	$32 \cdot 2$	32.2	32-2	$32 \cdot 2$	32.2	$32 \cdot 2$

Diurnal Inequality of the Declination at Barrackpore as deduced from the preceding Table.

Hours.	Mid.	1	2	3	\pm	5	6	7		19		11	Noon.	13	14	15	16	17	18	19	${ }^{20}$	21	22	23	Mid.
Winter.																									
1914 Months.	,	,		,	,					,	,	,		,	,	,	,	,	,	,	,	,	,	,	,
January	0	0	$-0 \cdot 1$	--0.2	-0.4	-0.4	-0.7	-0.0	-0.5	$+0 \cdot 1$	$+0.2$	-0.4	-0.4	0	$+0.6$	+0.8	+0.8	+0.3	0	0	0	0	0	0	0
February	0	$+0.1$	+0.1	+0.1	0	0	-0.2	-0.2	-0.1	-0.2	-0.4	-0.8	-0.8	-0.1	+0.5	+1.0	+1.1	+0.6	0	+1) 1	$+0.1$	0	0	0	0
March	+0.1	+0.1	+0.1	0	0	0	-0.1	+0:4	+1.3	+1.6	+1.4	+0.1	-1:0	-1.7	$-1 \cdot 4$	-0.6	+0.2	+0.3	+0.1	0	0	0	0	+0.1	+0.1
October	0	0	-0.1	-0.1	-0	$-0 \cdot 2$	-0.1	+0.9	$+\because 0$	+1:9	+0.7	-0.9	-17	-1.7	-0.7	$+0.1$	+0.6	+0.2	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	0
November	+0.1	+0.1	0	-0.1	-0.2	-0.4	-0.5	-0.4	+0.4	$+0.6$	+0.4	-0.3	-0.5	-0.2	0	$+0 \cdot 2$	+0.4	+0.3	+0.2	+0.2	$+0.1$	0	0	0	+0.1
December	+0.1	$+0.2$	0	-0.1	-0.3	-0.4	-0.7	-1.0	-0.4	$+0.6$	$+1 \cdot 2$	+0.s	$+0 \cdot 2$	-0.2	$-0 \cdot 2$	-0.2	0	$+0.2$	+0.2	$+0 \cdots$	+0.1	$+0 \cdot 1$	$+0.1$	$+0 \cdot 1$	+0.1
Means	0	$+0 \cdot 1$	0	-0.1	-0.2	-0.3	-0.4	-0.2	+0.4	$+0.7$	+0.6	-0.3	-0.7	-0.7	-0.2	$+0 \cdot 2$	+0.5	+0.3	0	0	0	0	0	0	0
Sommer.																									
April	+0.4	+05	+0.4	+0.4	+0.3	$+0 \cdot 2$	+0.4	$+1 \cdot 1$	$+2 \cdot 1$	+19	+0.6	-1.0	- -0	$-\vartheta 3$	-1.7	-0.9	-02	+0.1	+0.1	-0 2	-0-2	-0.2	+0.1	+0:3	+0.4
May	+0.2	$+0.3$	+0.1	$+0 \cdot 3$	+0.3	+0.3	$+13$	$+3$	$+2 \cdot 6$	$+1.7$	+0.1	-1.5	$-2 \cdot 3$	$-2 \cdot 1$	-1.3	-12	-0.3	+0.3	+0 2	-0.1	-0.2	-0.2	0	0	+0.2
June	$+03$	+0.5	+0:5	+0:5	+0.5	+0.6	$+17$	$+26$	$+2 \cdot 6$	$+1 \cdot \mathrm{~S}$	+0:1	--1.2	--2	-2.4	-2.0	$-1 \cdot 3$	-0.6	-0.2	$+0 \cdot 1$	-0.3	-0:4	-0.4	-0.2	0	+0.
July	0	$+0.2$	$+0.4$	+0.5	$+0 \%$	$+0 \cdot 6$	+1.8	$+2.7$	+2.7	+1.8	+0:1	$-1 \cdots$	$-2 \cdot 2$	-2.3	-2.2	-1.7	-0.8	0	0	-0.4	-0.3	-0.2	-0.1	-0.1	0
August	0	+0.1	$+0.1$	$+0 \cdot$	$+0 \cdot 1$	$+0 \cdot 6$	$+19$	$+3.1$	$+3.2$	+1.8	-02	-2.1	-29	-2*8	-2.0	-1.1	-01	+0.6	+0\%	-0.3	-0.4	-0.3	-0.3	-0.1	0
September	-0.1	0	0	$+0 \cdots$	-0.3	+05	+1.5	+2. s	$+3 \cdot 1$	+1.3	-0.5	$-2 \% 3$	-3.2	-2.8	-1.8	-0.3	+0.4	+0.6	-0.1	-0.3	-0.2	-0.2	-0.1	$-0 \cdot 2$	$-0 \cdot 1$
Meang	+0.1	+0.3	+0:3	+0:	+0\%	+05	$+1 \cdot 4$	+2.5	$+2 \cdot 7$	+1-8	+0.1	-1.5	-2.5	$-2 \cdot 5$	$-1 \cdot 9$	$-1 \cdot 1$	-0.3	+0 2	$+0.1$	-0.3	-0.3	-0.2	-0.1	0	+0-1

Howoly We.nt of Horizontal Foree in C. G. S. U'nits (Corrected for temperature) at Barrackpore fron all available days in 1914.

foam.	Mid.	1	\because	:	4	5	0	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	20	21	22	${ }^{29}$	Mid.	$M_{\text {mann. }}$
37000 c. G. S. $+\quad$ Winter.																										
$\begin{aligned} & \text { Mo1t } \\ & \text { Month. } \end{aligned}$	γ	7	γ	γ	γ	γ	γ	γ	7	7	t	γ	γ	γ	γ	γ	7	γ	γ	γ	γ	γ	γ	7	γ	γ
Japarary	386	337	388	389	391	399	39.1	398	404	409	411	414	413	409	406	401	396	392	390	388	386	385	385	385	386	${ }^{396}$
Pobraary	390	392	393	395	395	396	397	399	. 102	407	113	419	422	420	414	407	402	396	395	393	391	388	388	389	390	100
March	390	392	392	393	39.4	39.4	305	396	401	408	417	422	423	418	411	404	397	393	392	390	389	389	389	388	389	393
Outaber	a,9	395	397	397	399	400	401	402	400	401	407	416	423	421	${ }_{4} 12$	40.	397	395	395	383	393	39.4	394	396	398	401
November	395	397	397	398	400	402	403	407	413	417	421	428	424	417	408	402	399	397	395	393	390	380	393	394	398	403
December	403	401	402	404	405	407	408	. 13	419	423	425	428	${ }^{423}$	417	412	407	406	405	404	404	403	403	101	401	402	409
Meana	393	39.1	395	396	397	399	400	403	407	411	416	421	421	417	411	104	400	${ }^{396}$	395	394	392	392	392	392	394	401

Din. nal Incquality of the Horizontal Force at Barrackpore as deduced from the preceding Table.

Hoars.	Mid.	1	$\stackrel{1}{2}$	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	20	${ }^{21}$	22	23	Mid.
Winter.																									
$191_{ \pm}$ Months.	γ	γ	γ	γ	γ	γ	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	γ	' γ	γ	γ	γ	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$								
January	--10	-9	-8	-7	-5	-4	-2	+2	+8	+13	+15	+18	+ 17	+13	+10	+5	0	-4	-6	-8	-10	-11	-11	-11	-10
February	-10	-S	-7	-5	-5	-4	-3	-1	+2	+7	+13	+19	+22	+20	+14	+7	+2	-4	-5	-7	-0	-12	-12	-11	-10
March	-9	-7	-7	-7	-5	-5	-4	-3	+2	+9	+18	+23	$+2.4$	+19	+12	+5	-2	-6	-7	-9	-10	-10	-10	-11	-10
October	-5	-6	-4	-4	-2	-1	0	+1	-1	0	+6	+15	+22	+20	+11	+3	-4	-6	-6	-8	-8	-7	-7	-5	-3
Noveraber	-8	-6	-6	-5	-3	-1	0	+4	+10	+14	+18	+23	+21	+14	+5	-1	-4	-6	-8	-10	-13	-13	-10	-9	-7
December	-7	-8	-7	-5	-4	-2	-1	+4	+10	+14	+16	+19	+14	+8	+3	-2	-0	-4	-5	-5	-6	-6	-8	-8	-7
Neans	-8	-7	-6	-5	-4	-2	-1	+2	+6	+10	+15	+20	+20	+16	+10	+3	-1	-5	-6	-7	-9	-9	-9	-9	-7

Summer.																								
Spril -	-11	-10	-9	-8	--6	-4	-3	-3	-1	+6	+15	+22	+ +1	+2.l	+19	+12	+4	--2	-6	-9	-11 -10	-11	-10	-11
$\mathrm{Hay}^{\text {J }}$	-10	-8	-8	-6	-6	-6	-4	-3	-1	+ 1	+14	+20	+ 22	+22	+16	+8	0	-5	-8	-9	-10 -11	-10	-10	-10
June	-8	-7	-5	-6	-6	-6	-4	0	+ 4	+8	+16	+23	+22	+21	+1.4	+7	-3	-8	-10	-9	-10 -11	-10	--9	-8
July	-5	-6	-6	-4	-4	-4	-2	+1	+5	+7	+12	+16	+17	+17	+1.4	+8	0	-8	-9	-10	-10	-8	-7	-5
August	-8	-6	-5	-6	-4	-4	-1	+1	+1	+ 4	+10	+13	+18	+18	+12	+6	+2	-5	-11	-11	$-11-10$	-8	-7	-8
Septernber	-4	-1	-2	-1	0	+1	+2	-2	-7	-5	+2	+8	+12	+3.4	+13	+8	+2	-2	$\rightarrow 4$	-7	-8: -8	--6	-6	-4
Means	-7	-6	-5	-5	-4	-3	-2	-1	+1	+4	+12	+17	+20)	+20	+15	+9	+1	- 5	--8	-9	$-10:-10$	-8	-8	-7

Howrly Means of Vertical Force in C．F．S．Units（Correeted for temperature）at Barrackpore from all available lays in 1914.

Hoars．	Mid．	1	2	${ }^{3}$	4	5	6	7	8	9		11	Nooo．	${ }^{13}$	14	15	16	17	18	${ }^{19}$	${ }^{20}$	${ }^{21}$	22	${ }^{23}$	Mid	Meape．
22000 c．g．S．t Wiuter．																										
$\begin{aligned} & \text { Monthe. } \\ & \text { Mone } \end{aligned}$	γ	7	γ	\because	γ	7	γ	γ	γ																	
Janary	122	423	423	424	＋134	425	． 26	427	427	425	120	419	419	431	131	122	12	$4: 2$	123	422	42	122	423	423	423	423
Febraary	431	431	431	． 31	43	． 132	433	434	433	${ }^{131}$	427	425	425	426	127	128	49	129	430	430	431	431	431	432	432	430
March	435	436	436	437	437	437	${ }^{137}$	438	437	433	129	42.	422	423	427	${ }_{4} 40$	432	432	434	434	435	43.5	435	435	435	433
October	479	479	479	479	479	480	480	482	480	475	170	463	487	469	172	474	475	478	478	478	479	479	$4 \tau 9$	478	478	476
November	491	191	491	491	491	492	493	484	493	490	486	483	482	433	48.	485	488	489	190	491	491	491	491	491	491	489
December	401	490	491	491	492	493	493	49.	495	49.	190	${ }^{486}$	485	483	483	185	487	489	490	490	490	490	490	490	490	490
Means	458	458	459	459	459	460	460	462	461	458	454	451	450	451	45	454	456	456	458	458	458	458	458	458	458	457

	$\stackrel{\otimes}{T}$
年咢	\％
	\％
	\％
	第
	\％
	\％\％
	$\stackrel{\square}{\square}$
	$\%$
	$\stackrel{0}{9}$
	令
	容
	骂
枵	枵
	\％
	授
令	骂
	$\stackrel{\square}{\square}$
	\％
尔 告	先
	\％
鹗䍓	楬
	\％
	$\stackrel{\text { \％}}{+}$
	$\stackrel{\text { \％}}{\square}$
骂捅	\％
	蕆

Vol. IX.]
Diurnal Inequality of the Vertical Force at Barrackpore as deduced from the precerling Table.

Hoars.	Mid.	1	2	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid.
Winter.																									
1914 Months.	γ	\boldsymbol{y}	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	γ	γ	$\boldsymbol{\gamma}$	γ	?	γ	γ	γ	γ	γ	γ	$\boldsymbol{\gamma}$	7	γ
January	-1	0	0	+1	+1	+2	+3	$+4$	+4	+2	-3	-4	-4	-2	-2	-1	-1	-1	0	-1	-1	-1	0	0	0
February	+1	+1	+1	+1	+2	+2	+3	+4	+3	+1	-3	-5	-5	-4	-3	-2	-1	-1	0	0	+1	+1	+1	+2	+2
March	+2	+3	+3	+4	+4	+4	+4	+5	+4	0	-4	-9	-11	-10	-6	-3	-1	-1	+1	+1	+2	+2	+2	+2	+2
October	+3	+3	+3	$+3$	+3	+4	+4	+6	+4	-1	-6	-8	-9	-7	-4	-2	-1	0	+2	$+2$	+3	+3	+3	+2	+2
November	+2	$+2$	+2	+2	+2	+3	+4	$+5$	+4	+1	-3	-6	-7	-6	-5	-1	-1	0	+1	+2	+2	+2	+2	$+2$	+2
December	+1	0	+1	+1	+2	+3	+3	+1	+5	+1	-0	-4	-5	-7	-7	-5	-3	-1	0	0	0	0	0	0	0
Means	+1	+1	+2	+2	+2	+3	+3	+5	+ 6	+1	-3	-6	-7	-6	-5	-3	-1	-1	+1	+1	+1	+1	+1	+1	+1

Hourly Means of the Dip as determined at Barrackpore from all available days in 1914.

Hourd.	Mid.	1	2	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid.	Meanm
N $30^{\circ}+\quad$ Winter.																										
1014 Months.	,	,	,	,	,	,	,	,	,	,	,			,	,	,		,	,	,	,	,	,	,	,	,
Janaary	57.2	57ヶ	37.2	57-2	57.1	$57 \cdot 1$	57.1	57.0	56.8	56.4	56.0	55.8	55.9	56-2	$56 \cdot 3$	56.6	56.7	$56 \cdot 3$	571	57-1	57.2	$57 \cdot 2$	$57 \cdot 3$	57.3	57.2	56.8
February	57.6	57.6	57.5	57-4	57.5	57.4	57.5	57.5	57.3	57.0	56.4	56.0	55.8	$58 \cdot 1$	56-4	56.7	57.0	57-2	57.4	57-4	57.6	57.7	57.7	57.8	57.7	57.2
March	57.0	57.9	57.9	$57 \cdot 9$	57.9	$57 \cdot 9$	57.8	57.8	$57 \cdot 6$	57.1	56:4	55.8	55.7	$55 \cdot 3$	56.5	57.0	57-4	57.6	57.8	57.8	58.0	58.0	58.0	58.0	58.0	57.4
October	606	$60 \cdot 7$	60.6	60.6	605	60.6	$60 \cdot 5$	$60 \cdot 6$	60.6	(1) 2	59.6	59.1	$58 \cdot 7$	58.0	59.5	$60 \cdot 0$	60.3	60.5	60.6	$60 \cdot 7$	60.8	60.7	60.7	60.6	$60 \cdot 5$	60%
Nuteruber	51.5	61.1	61.4	61-1	$61 \cdot 3$	$\mathrm{Cl}^{1} 3$	$61 \cdot 3$	$61 \cdot 2$	$60 \cdot 9$	60.5	60.1	59.7	59.7	$60 \cdot 0$	60.5	$60 \cdot 8$	61.1	$61 \cdot 3$	61.4	$61 \cdot 6$	01.7	61.7	61.6	61.5	61%	61.0
December	81.2	612	$61 \because 2$	61.1	61.1	61.1	$61 \cdot 1$	61.0	$60 \cdot 8$	$60 \cdot 6$	60\%	$50 \cdot 8$	59%	60.0	60-2	$60 \cdot 6$	$60 \cdot 8$	$60 \cdot 9$	61.0	61.0	61.1	61.1	$61 \because 2$	61.2	61.1	60.8
Means	593	50.3	593	50.3	59.2	59.2	50\%	$59 \because$	59.0	58.6	58.1	37.7	57.6	57.9	58\%	58.6	58.9	$59 \cdot 1$	59.2	593	$50 \cdot 4$	$59 \cdot 4$	$59 \cdot 4$	50.4	593	$58 \cdot 9$

Summer.

April	58.7	58.7	58.7	58.7	$58 \cdot 6$	$58 \cdot 6$	58.6	$58 \cdot 6$	58.2	57.5	56.7	58.2	56.2	56.5	57.0	57.4	57.0	58\%	58.5	58.6	58.7	58.8	58.7	58.8	$58 \cdot 8$	58.0
May	$5 \mathrm{~S} \cdot 6$	58.5	58.5	58.5	58.5	58.5	$5 \mathrm{~S} \cdot 6$	58.4	58.1	57.6	57.0	$58 \cdot 6$	56.6	$56 \cdot 9$	57.1	57.7	58.0	58.2	58.1	58.5	58.6	58.7	58.7	58.6	58.6	58.1
June	50\%	59.1	59.0	59.1	59.1	59.2	59\%	58.9	58.5	58.1	57.7	57.3	57.5	57.7	58.0	58.4	58.8	$59 \cdot 1$	59.2	$59 \cdot 2$	59•3	$59 \cdot 4$	$59 \cdot 4$	59.2	59.2	58.7
July	59.5	50.5	59.5	59.4	59-4	59.5	59.5	59.2	58.8	58.6	58.1	57.8	57.9	58.1	58.2	58.6	59.0	59•4	59.5	59.6	$59 \cdot 8$	$59 \cdot 3$	59.7	59.6	59.5	59.1
August	$60 \cdot 1$	600	59.9	$60 \cdot 0$	$59 \cdot 9$	59.9	59.9	59.7	59.5	59.1	58.7	58.5	58.4	58.6	58.9	59.3	59.5	59.8	60	63\%	60.2	$60 \cdot 2$	$60 \cdot 1$	60.0	$60 \cdot 1$	$59 \cdot 6$
September	$60 \cdot 6$	60\% 4	$60 \cdot 5$	60.4	60.4	$60 \cdot 4$	60.5	$60 \cdot 6$	60.5	60.1	59.6	59-2	$50 \cdot 2$	593	59.5	59.9	60.1	$60 \cdot 3$	$60 \cdot 4$	$60 \cdot$	60.7	60.7	60.7	60.7	$60 \cdot 6$	$60 \cdot 2$
Means	59.5	5\%-4	59.4	50.1	593	50.4	59\%4	59.2	$58-9$	58.5	580	57.6	57.6	37.9	58.1	58.6	$58 \cdot 9$	$59 \cdot 2$	594	59.5	$59 \cdot 6$	$58 \cdot 6$	$59 \cdot 6$	59\%	59.5	59.0

Disrnal Inequality of the Dip at Barrackpore as deduced from the preceding Table.

Ноars.	Mid.	1	2	3	4	5	${ }^{6}$	7	8	9	10	11	Noon.	19	${ }^{14}$	15	${ }^{16}$	17	18	19	20	${ }^{2}$	22	29	Mid.
Winter.																									
1915	,					,			,		,				,				,	,	,		,		
Janaary .	+0.t	+0.4	+0.1	$+0.4$	+0.3	+0:3	+0.3	+0.2	0	-0:4	-0.8	-0.9	-0.9	-0.6	-0.5	-0.2	-0.3	+0.1	+0.3	+0.3	+0.4	+0.4	+0.5	+0.5	+0.4
Febrary	+0.4	+0.4	-0:3	$+0 \cdot 2$	+0:3	+0.2	+0:3	+0.3	+0.1	-0.2	-0.8	-12	-1:3	-11	-0.8	-0.5	-0.2	0	+02	+0.2	+0.4	+0.5	+0.5	+0.6	$+0.5$
March	+0.5	+0\%	+0.5	+0.5	+0.5	+0.5	+0:1	+0.4	+0:2	-0,3	-1.0	-1.6	-17	--15	-0.9	-0.4	0	$+0 \cdot 2$	+0.4	+0.4	+0.6	+0.6	$+0.6$	+0.6	+0.6
October	+0:3	+0.4	$+0.3$	+0:3	+0.2	+0:3	$+0.2$	$+0.3$	+0:3	- -11	-0.7	-1.2	-1.6	-14	-0.8	-0:3	0	$+0 \cdot 2$	+0:3	+0.4	+0.5	$+0.4$	+0.4	+0,3	$+0.2$
November	$\therefore+0.5$	+0.4	+0:1	+0:1	+0.3	+0:3	+03	+0.2	-0.1	-0.5	-0.0	-13	-1:3	-10	-0.5	-0.2	+0.1	+0.3	$+0.4$	+0.6	$+0.7$	+0.7	$+0.6$	+0.5	+0.4
December	+0.4	$+0.4$	+0:1	+0.3	+0.3	+0:3	+0.3	+0.2	0	-0.2	-0.6	-1.0	-0.9	-0.8	-0.6	-0.2	0	+0.1	+0.2	+ ${ }^{\text {a }}$	+0:3	+0.3	+0.4	+0.4	+0.3
Means	. +0.4	+0.4	+0:4	+0.1	+0.3	$+0 \cdot 3$	+0:3	+0.3	+0.1	-0:3	-0.8	-1.2	-13	-10	-0.7	-0.3	0	+0.2	$+0.3$	+0.4	+0.5	+0.5	+0.5	+0.5	+0.4

E.-Tablcs of results at Toungoo.
Hourly Meens of the Declination as determined at Toungoo from all available days in 1914.

Hoorn	Mis.	1	$\stackrel{1}{2}$	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	20	${ }^{21}$	22	23	mid.	Means.
1014 Mooths.			,							,	,	,			,		,	,	,	,	,	,	,	,	,	,
January	50	$5 \cdot 1$	5.0	+s	47	46	4.	$4 \cdot 1$	4.	5.0	5	5.0	48	52	$5 \cdot 6$	5.8	$5 \cdot 8$	54	5.2	$5 \cdot 2$	$5 \cdot 1$	$5 \cdot 1$	$5 \cdot 0$	$\stackrel{0}{ }$	$5 \cdot 0$	5.0
Fobruary	4	45	4.5	$1 \cdot 5$	1.4	43	42	43	42	40	3.7	$3 \cdot 6$	3.7	45	5.1	$5 \cdot 4$	$5 \cdot 4$	$5 \cdot 1$	45	4.6	4.5	4.4	4.3	4.4	4.4	4.4
March	4	42	4.	4.2	40	3.9	3.9	14	$5 \cdot 1$	$5 \cdot 3$	$5 \cdot 1$	$4 \cdot 3$	3.4	$2 \cdot 8$	20	$3 \cdot 6$	4.2	43	4.2	42	41	40	4.0	40	4.1	4.1
Oetrber	1.1	11	1.0	10	0.9	$0 \cdot 9$	$1 \cdot 1$	\bigcirc	$2 \cdot 7$	$2 \cdot 6$	$1 \cdot 6$	$0 \cdot 3$	-0.4	-0.2	0.4	1.1	15	14	$1 \cdot 1$	$1 \cdot 1$	10	1.0	1.0	1.0	1.1	1.1
November	07	07	05	0.6	0.3	02		02	09	1.2	1.0	0.7	05	0.8	0.7	0.8	$1 \cdot 1$	10	$0 \cdot 9$	0.9	0.8	$0 \cdot 6$	0.6	$0 \cdot 6$	0.6	0.7
December	0.1	0.1	0.1	0.0	-0.1	-0.3	-0.6	-0.9	-0.3	$0 \cdot 5$	11	10	$0 \cdot 6$	0.2	-0.1	-0.1	$0 \cdot 2$	$0 \cdot 3$	C. 2	0.2	$\stackrel{\square}{ }$	0.1	0.1	0.1	0.1	0.1
Menss	\cdots	2.6	\cdots	2.5	$2 \cdot 1$	$2 \cdot 3$	$2 \cdot 2$	$\because 4$	2.8	3.1	3.0	2.5	$2 \cdot 1$	-2	$2 \cdot 1$	$2 \cdot 8$	$3 \cdot 0$	$2 \cdot 9$	2.7	2.7	$2 \cdot 6$	2.5	2.5	2%	$2 \cdot 6$	2.6

Vor. IX.]
Diurnal Inequality of the Declination at Toungoo as deduced from the preceding Table.

Hours.	Mid.	1	2	$3{ }^{\text {a }}$ [4	5	6	7	8	9	10	11	Noon.	13	16	15	16	17	18	19	20	21	22	23	Mid.
Winter.																								
1914 Months.	,	,	,	, ,	,	,	,	,	,	,		,	,	,	,	,	,	,	,	,	,	,	,	,
Janaary .	0	$+0.1$	0	$-0.2-0.3$	-0.4	-0.6	-0.9	-0.6	0	$+0 \cdot 2$	0	-0.2	+0.2	+0.6	+0.8	+0.8	+0.4	+0.2	+0.2	$+0 \cdot 1$	+0.1	0	0	0
Febraary	0	$+0.1$	+0.1	+0.1 0	-0.1	-0.2	-0.1	-0.2	-0.4	-0.7	-0.8	-0.7	$+0.1$	+0.7	$+1.0$	+1.0	+0.7	+0.1	+0.2	$+0.1$	0	-0.1	0	0
March .	0	+0.1	+0.1	$+0 \cdot 1-0.1$	-0.2	-0.2	+0:3	$+1.0$	+1:2	+1.0	$+0.2$	-0.7	-1.2	$-1 \cdot 2$	-0.5	+0.1	+0.2	+0.1	$+0.1$	0	-0.1	-0.1	-0.1	0
Ootober	0	0	-0.1	$-0.1-0.2$	-0.2	0	$+0.9$	+1.6	+15	+0.5	-0.8	-15	-13	-0.7	0	$+0.4$	$+0 \cdot 3$	0	0	-0.1	-0.1	-0.1	-0.1	0
November	0	0	-0.	-0.3:-0.4	-0.5	-0.6	-0.5	+02	+0.5	+0.3	0	-0.2	$+0.1$	0	+0.1	+0.4	+0.3	+0.2	+0\%	+0.1	-0.1	-0.1	-0.1	-0.1
December	0	0	0	$-0.1 \mid-0.2$	-0\%	-0.7	-1.0	-0.4	+0.4	+1.0	+0.9	+ +0.5	+0.1	-0.2	-0.2	+0.1	+0.2	+0.1	+0.1	$+0.1$	0	0	0	0
Means	0	0	0	-0.1:-0.2	-0.3	-0.4	-0.2	$+0 \cdot 2$	$+0.5$	$+0.4$	-0.1	-0.5	-0.4	-0.2	+0.2	$+0.4$	+0.3	+0.1	$+0.1$	0	-0.1	-0.1	-0.1	0
Summer.																								
April	+02	+033	+0.3	+0.3 +0.2	+0.1	+0\%	+1-2	+15	+1/1	+0.3	-0.8	-17	-1.8	-15	-0.7	-0.2	+0.2	0	-0.1	-0.2	-0.2	-0.1	+0.1	+0.2
May	0	+02	+0.2	$+0.2+0.1$	$+0.1$	+1.1	+19	+2•2	+15	$+0 \cdot 3$	-0.0	-1.8	-1.9	-1.5	-10	-0.3	+0.1	+0.1	-0.1	-0.2	-0.2	-0.2	-0.1	0
June	0	+0.2	+0.3	$+0.3+0.3$	+0.4	+1-4	$+2 \cdot 2$	+24	+15	$+0 \cdot 6$	-0:1	-1.4	-1.6	-15	-1-2	-0.6	-0.4	-0.1	-0.4	-0.4	-0.5	-0.4	-0.3	0
July	-0.2	0	$+0 \cdot 2$	$+02+0.3$	+0.5	+15	$+2$	+ 23	$+16$	+ 0.4	-0.6	-1.4	-1.7	-1.7	-1.4	-0.7	-0.2	-0.1	-0.4	-0.5	-0:1	-0.3	-0.3	-0.2
Auguat .	-0.2	-0.1	0	$0{ }_{0}+0 \cdot 1$	+0.4	+17	+2•8	$+2 \cdot 9$	$+17$	0	-14	-20	-1.9	-1.5	-0.8	0	+0.5	$+0 \cdot 2$	-0.2	-0.3	-0.4	-05	-0.3	-0.2
September	-0.1	0	0	0 0, $0 \cdot 0$	+0.4	+1/4	$+2 \cdot 8$	+2.3	$+17$	$-0 \cdot 2$	-1.6	-2.5	$-2 \cdot 1$	-17	-0.6	+0:1	+0.6	0	$-0 \cdot 2$	-02	-0.2	-0.2	-0.2	-0.1
Means	0	+0.1	$+0.2$	+0.2+02	+0.3	+13	$+2$	$+2 \cdot 4$	+15	+0.3	-19	-1.8	-1.9	-1.5	-0.9	$-0 \cdot 2$	+0.2	0	-0*	-0.3	-0.3	$-0 \cdot 3$	-0.2	0

Hourly Means of Horizontal Force in C. G. S. Units (Corrested for temperature) at Toungoo from all available days in 1914.

Hours.	Mid.	1	2	3		5	c	7	${ }^{8}$	9	${ }^{11}$	11	Noon.	13	14	15	16	17	18	19	${ }^{20}$	${ }^{21}$	22	23	Mid.	Means.
.35000 C.G.S. + Winte																										
$\begin{gathered} \text { 1014 } \\ \text { Monthe. } \end{gathered}$	γ	γ	γ	γ	γ	γ	7	γ	7	γ	γ	7	7	γ												
Janamary	971	972	973	973	974	975	976	aso	ass	${ }^{993}$	98	ө99	998	93.	988	983	977	973	973	972	971	970	971	971	971	980
Pebrasty	971	972	973	974	975	${ }^{95}$	976	${ }_{78} 8$	${ }^{983}$	990	09	100:	1005	1000	991	98.4	979	975	97.	973	971	988	969	969	971	980
March	968	969	989	969	970	971	970	97\#	978	988	909	1000	1005	998	988	978	971	968	968	988	ө日7	967	968	968	968	977
Ootober	981	981	981	981	983	983	983	99	. 986	992	1002	1011	1013	1006	995	985	980	977	979	979	979	973	981	98	983	987
November	979	981	981	931	982	98.4	986	990	997	1005	1009	1012	1010	1001	992	985	981	980	980	978	975	976	978	980	979	${ }^{988}$
Dacomber	987	984	936	987	986	989	991	997	1002	1007	1012	1013	1012	1006	998	991	988	986	986	986	987	987	986	985	987	${ }^{993}$
Means	976	977	977	975	978	980	980	${ }_{98}$	989	996	1003	1007	1007	1001	992	98.4	979	977	977	976	975	975	976	976	${ }^{97}$	98.

Diurnal Inequality of the Horizontal Force at Toungoo as deduced from the preceding Table.

Hoars.	Mid.	1	2	3	4	5	6	7	8	9	10	11	Noun.	13	14	15	16	17	-18	19	20	21	22	23	Mid.
Winter.																									
1914																									
Months.		7	γ	γ	γ	$\boldsymbol{\gamma}$	7	γ	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	γ	γ	γ	$\boldsymbol{\gamma}$	γ	γ	γ	γ	γ	γ	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$
January	-9	-8	-7	-7	-6	-5	-4	0	+8	+13	+18	+19	+19	+14	+8	+3	-3	-7	-7	-8	-9	-10	-9	-9	-9
February	-9	--8	-7	-6	-5	-5	-4	-2	+3	+10	+18	+23	+25	+20	+11	+4	-1	-5	-6	-7	-9	--12	-11	-11	-9
March	-9	-8	-8	-. 8	-7	-6	-7	-5	+1	+11	+22	+29	+28	+21	+11	+1	-6	-9	-9	-9	-10	\cdots	-9	-11	-9
October	-6	-6	-6	-6	-4	-4	-4	-4	-1	+5	+15	+24	+26	+19	+8	-2	-7	-10	-8	-8	-8	-8	-6	-5	-4
November	-9	-7	-7	-7	-6	-4	-2	+2	+9	+17	+21	+24	+22	+13	+4	-3	-7	-8	-8	-10	-13	-12	-10	-8	-9
December	--6	-0	-7	-6	-7	-4	-2	+4	+9	+14	+19	+20	$+19$	+13	+5	-2	-5	-7	-7	-7	-6	-6	-7	-8	-6
Means	-8	--7	-7	-6	-6	-4	-4	-1	+5	+12	+19	+23	+23	+17	+8	0	-5	--7	-7	-8	-9	-9	-8	-8	-7

Hourly Means of Vertical Force in C. G. S. Units (Corrected for temperature) at Toungoo from all available days in 1914.

Honrs.	Mil.	1	:	3		5	${ }^{6}$	7	8	9	10	11	Noon	13	${ }^{14}$	15	16	17	18	19	20	21	22	23	Mid.	Means.
16000 c.c.i.s. $+\quad$ Winter.																										
Kouths.	γ	7	γ	7	7	y	γ	7	7	γ	7	γ	y	γ	γ	7	γ	γ	7							
Jamary	12.4	69.4	62.1	(2)	\% 2	6:2	E*3	62	\%2	620	616	015	616	621	623	624	[23	622	623	623	62.4	62.4	6.4	624	824	622
February	6.7	627	827	627	\%27	197	627	(2)	[29	618	614	013	${ }^{\circ} 17$	62.2	625	627	626	62.	62. 4	626	626	626	626	627	627	624
March	017	817	618	618	817	${ }_{6} 17$	${ }^{1} 18$	019	615	609	col	600	509	603	609	61.4	615	615	${ }_{6} 15$	615	616	616	617	617	618	613
Octuber	6:4	6.4	0.43	6.43	6.43	6.41	6.41	847	0.42	632	62.4	622	625	633	639	641	6.10	639	640	641	641	8.12	6.12	643	843	639
November	6.46	6. 46	6.616	0.16	6.46	6.46	6.46	847	6.46	C.41	637	${ }^{638}$	637	638	698	641	6.13	643	6.44	6.44	645	615	6.1	646	846	6.13
December	6.55	6.45	645	6.45	6 ± 5	6.4	6 ± 4	6.43	6.45	6.44	6.40	636	631	638	63.4	$6{ }^{6} 7$	6.41	642	613	644	6.4	6.4	6.4	6.5	645	6.12
Means	63.4	63.4	63.4	63.6	6334	634	634	634	632	627	623	620	621	625	628	631	631	631	632	632	633	633	633	${ }^{634}$	634	631
Summer.																										
April	630	630	630	630	629	629	831	631	62.4	${ }^{616}$	610	808	611	617	623	627	629	629	627	628	628	629	629	630	630	625
May	631	631	631	630	630	631	834	633	627	620	616	815	617	621	626	629	631	630	629	629	629	630	631	631	631	628
June	627	627	626	626	626	627	630	628	623	615	615	013	61.4	619	623	625	627	627	626	625	626	6.6	627	627	627	624
Jaly	629	629	629	629	629	630	e32	630	626	619	615	014	615	620	632	626	628	628	627	627	627	628	628	628	629	626
Angast	830	630	630	: 630	630	631	035	634	626	616	A11	613	617	622	626	630	631	631	628	628	629	630	630	630	630	627
September	632	633	633	693	633	633	038	637	627	615	608	807	612	620	628	632	633	631	628	630	831	631	632	632	632	628
$M_{\text {eans }}$	630	630	630	630	630	${ }^{630}$	633	${ }_{6} 32$	628	617	613	812	61.4	620	625	628	630	629	628	628	628	629	${ }^{\text {a30 }}$	630	630	626

Diurnal Inequality of the Vertical Force at Toungoo as deduced from the preceding Table.

Hours.	Mid.	1	2	3	4	5	${ }^{6}$		8	9	10	${ }^{11}$	Noon.		14	15	16	17	13	19	${ }^{20}$	${ }^{21}$	${ }^{23}$	${ }^{23}$	Mid.
Winter.																									
$\underset{\text { Monthe. }}{1914}$	7	r	7	7	γ	7	γ	γ	γ	γ	γ	7	γ	r											
January	+2	+2	+2	+2	+2	+2	+1	0	0	-2	-6	-7	-6	-1	+1	+2	+1	0	+1	+1	+2	+2	+2	+2	+2
Febraary	+3	+3	+3	+3	+3	+3	+3	+2	-2	-6	-10	-11	-7	-2	+1	+3	+2	0	0	+2	+2	+2	+2	+3	+3
March	+4	+	+5	+5	+4	+4	+5	+ 6	+2	-4	-9	-13	-14	-10	-4	+1	+2	+2	+2	+2	+3	+3	+4	+4	+5
Oetober	+4	+4	+4	+4	+ +	+5	+7	+8	+3	-7	-15	$\rightarrow 17$	-14	-6	0	+2	+1	0	+1	+2	+2	$+3$	+3	+4	+4
November	+3	+3	+3	+3	+3	+3	+3	+4	+3	-2	-6	-7	-6	-5	-5	-2	0	0	+1	+1	+2	+2	+3	+3	+3
December	+3	+3	+3	+3	+3	+2	+2	+1	+3	+2	-2	-6	-11	-10	-8	-5	-1	0	+1	+2	+2	+2	+2	+3	+3
Means	+3	+3	+3	+3	+3	+3	+3	+3	+1	-4	-8	-11	-10	-6	- 3	0	0	0	+1	+1	+2	+2	+2	+3	+3

	7
¢ ¢ ¢ ¢ ¢ + ¢ +	7
	$\overrightarrow{+}$
	+
可	$\stackrel{\sim}{+}$
	$\stackrel{9}{+}$
	$\stackrel{\sim}{+}$
	$\stackrel{\square}{+}$
¢ ¢ ¢ ¢ ¢ ¢ + +	$\stackrel{+}{+}$
- ¢ 7 + ¢ ¢	$\stackrel{\text { ar }}{+}$
	T
i 1 i i i i	i
	$\stackrel{3}{1}$
	$\stackrel{\rightharpoonup}{i}$
	$\stackrel{9}{1}$
	i
$\vec{\imath} \vec{T} \circ \overrightarrow{1}$	\bigcirc
우눟 $\overrightarrow{+}$ ¢ ${ }_{+}^{\text {¢ }}$	$\stackrel{+}{+}$
$\stackrel{+}{+} \times \stackrel{+}{+}+\underset{+}{+}+\underset{+}{+}$	+
	+
	$\stackrel{+}{+}$
	+
	\pm
	$\stackrel{+}{+}$
	+
	-

Mourly Means of the Dip as determined at Toungoo from all available days in 1914.

Hoars.

Summer

\bigcirc	9	is	io	$\stackrel{-1}{6}$	$\stackrel{7}{0}$	is
$\stackrel{\dagger}{\circ}$	$\stackrel{4}{6}$	¢ ¢	8	0	9	40
$\dot{0}$	$\underset{c}{0}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \end{aligned}$	-0	$\stackrel{0}{6}$	0	8
0	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	N	9	0	8
مْ:	\vec{i}	$\begin{aligned} & \underset{\sim}{0} \\ & \dot{0} \end{aligned}$	OO	$\stackrel{\circ}{9}$	\bigcirc	¢0
0	$\stackrel{\square}{6}$	$\stackrel{-1}{\text { ¢ }}$	-	$\stackrel{\square}{0}$	\bigcirc	$\ddot{0}$
0	B	$\dot{0}$	$\stackrel{N}{\circ}$		10	$\%$
8	$\stackrel{C}{\infty}$	\bigcirc	$\underset{\infty}{\infty}$	$\stackrel{0}{0}$	0	$\dot{¢}$
0	\vec{i}	فி	$\overrightarrow{0}$	$\stackrel{\text { ¢ }}{ }$	\bigcirc	0
$\ddot{0}$?	$\stackrel{-1}{0}$	$\stackrel{-6}{6}$	0	\bigcirc	0
θ	ip	E	is	0	¢0	¢
is	in	in	rir	今	is	- ${ }^{\text {c }}$
$\stackrel{\square}{+}$	+	$\stackrel{0}{4}$	$\stackrel{\infty}{\square}$	-	is	$\stackrel{0}{\square}$
$\stackrel{\rightharpoonup}{+}$	$\stackrel{m}{\square}$	$\stackrel{9}{4}$	$\stackrel{7}{-7}$	$\stackrel{\infty}{-1}$	$\stackrel{+}{3}$	$\stackrel{7}{*}$
$\begin{aligned} & \infty \\ & i \\ & i \end{aligned}$	$\begin{gathered} \text { N } \\ \text { H } \end{gathered}$	$\underset{\text { H }}{\text { H }}$	$\begin{gathered} \text { gi } \\ \dot{f} \end{gathered}$	$\stackrel{3}{\square}$	$\stackrel{\circ}{-}$	$\stackrel{\text { N }}{+}$
$\underset{\sim}{-}$	$\stackrel{\square}{4}$	$\overrightarrow{3}$	\because	$\underset{\sim}{4}$	\cdots	$\stackrel{?}{7}$
8	P	$\stackrel{\infty}{+}$	$\stackrel{9}{4}$	is	$\stackrel{-1}{\text { is }}$	is
is	$\begin{aligned} & \infty \\ & i n \end{aligned}$	is	is	8	¢	is
0	$\stackrel{7}{6}$	$\stackrel{-1}{\text { or }}$	$\stackrel{-0}{6}$	$\stackrel{\rightharpoonup}{\circ}$	0	8
5	O	$\begin{gathered} \infty \\ \hline \end{gathered}$	$\underset{i}{+}$	$\begin{aligned} & \infty \\ & \dot{0} \end{aligned}$	$\underset{i}{C}$	$\dot{\oplus}$
$\stackrel{\leftrightarrow}{6}$	$\overrightarrow{0}$	6	¢	$\stackrel{¢}{\circ}$	¢	$\stackrel{\rightharpoonup}{\circ}$
0	0	$\stackrel{7}{0}$	¢	8	$\stackrel{0}{0}$	$\stackrel{7}{6}$
0	$\underset{i}{0}$	$\stackrel{7}{6}$	¢	¢0	$\stackrel{0}{\circ}$	-
$\stackrel{\circ}{6}$	-	9	-	$\begin{aligned} & 10 \\ & 6 \\ & \hline \end{aligned}$	0	-4
¢	$\stackrel{7}{6}$	$\stackrel{\rightharpoonup}{0}$	$\hat{6}$	¢	$\stackrel{\oplus}{\oplus}$	$\dot{0}$
$\stackrel{+}{0}$	0	0	0	$\stackrel{0}{6}$	$\stackrel{e}{\dot{0}}$	on
	$\underset{8}{8}$	$\begin{aligned} & \text { 昌 } \\ & \stackrel{y}{5} \end{aligned}$	$\frac{7}{\square}$			

VoL. IX.]
MAGNETIC SURVEY.
Ditrnal Inequality of the Dip at Toungoo as deduced from the preceding Table.

Hours.	Mid.	1	2	${ }^{3}$	\pm	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid.
Winter.																									
1914 Months.	,	,	,	,		,	,			,	,	,	,		,	,	,	,			,	,	,	,	,
January	+0.4	+0\%	+0.4	+0.4	+0.3	+0.3	$+0 \cdot 2$	0	-0.3	-0.6	-1.0	-1.1	-1.1	-0.5	-0.2	0	+0.1	+0.2	+0.3	+0.3	+0.4	+0.5	+0.4	+0.4	+0.4
February	+0.5	+0\%	+0.5	+0.4	+0:4	+0.4	+0.4	+0.2	$-0 \cdot 2$	-0.7	-13	-1.5	-1.3	-0.8	-0.2	+0.1	+0.2	+0.2	+0.2	+0.4	+0.5	$+0.6$	+0.5	+0.6	+0.5
March	+0.6	+0.5	$+0.6$	+0.6	$+0.5$	+0:5	+0.6	$+0.6$	+0.1	-0.7	$-1 \cdot 4$	-1.9	-1.9	-1.4	-0.7	0	+0.3	+0.4	+0.4	+0.4	$+0.5$	$+0.5$	+0.6	+0.6	+0.7
October	+0.5	+0.5	+0.5	+0.5	+0.4	+0:5	+0.7	+0.7	+03	-0.7	-1.6	-2.0	-19	-10	-0.2	+0.2	+0.3	+0.3	$+0.3$	+0.4	+0.4	+ 0.5	+0.5	+0.5	+0.4
November	- +0.5	+0.4	+0.4	+0.4	+0.4	+0.3	+0.3	+0.2	-0.1	-07	$-1 \cdot 1$	$-1 \cdot 3$	-1.2	-0.8	-0.5	-0.1	+0.2	+0.2	$+0 \cdot 3$	+0.4	+0.5	+0.5	+0.5	+0.5	+0.5
December	+0.5	+0.5	+0.5	+0.5	+0.5	$+0 \cdot 3$	$+0.3$	0	0	-0.2	-0.7	-1.0	-1•4	;-1.1	-0.7	-02	$+0.1$	$+0.3$	+0.3	+0.4	+0.4	+04	+04	$+0.5$	+0.5
Means	+0.5	+0.4	$+0.5$	+04	+0.4	$+0.4$	+0.4	$+0.3$	-0.1	-0.6	-12	-1.5	-15	-1.0	-0.4	0	+0.2	+0.2	+03	+0.4	+0.4	+0.5	+0.5	+0.5	+0.5

Summer.

F.-Tables of results at Kollaikānal.
Hourly Mcans of the Declination as determincd at Kodaikinnal from

Hours.	Mid.	1	\because	3	4	5	6	7	8	9	10	11	Noon.	13	1.	15	16	17	18	19	20	${ }^{2}$	22	23	Mid.	Means.
$\mathrm{Wl}^{\circ}+\quad$ Winter.																										
1914 Monthe				,	,				,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,
January	1.43	143	14•4	1.45	1.46	147	14.9	$15 \cdots$	15.3	15%	14.9	15.0	1.47	14.3	13.9	13.6	$13 \cdot 6$	$14 \cdot 1$	$14 \cdot 2$	$14 \cdot 2$	14.2	$14 \cdot 3$	14.3	14.3	14.3	$14 \cdot 5$
February	1.6	1.15	1.48	1.48	1.4.9	15.0	15.0	$15 \cdot 1$	15.4	15%	$15 \cdot 6$	$15 \cdot 7$	15.5	14.0	1.43	$13 \cdot 9$	$13 \cdot 8$	14.2	14.6	14.6	14.8	14.8	14.9	14.9	14.9	14.9
March	15.2	15%	$15 \cdot 2$	15\%	$15 \because 2$	153	153	15.2	140	1.8	14.8	15%	$15 \cdot 8$	18.1	$15 \cdot 8$	$15 \cdot 4$	14.0	14.3	$15 \cdot 1$	$15 \cdot 2$	153	$15 \cdot 3$	$15 \cdot 2$	$15 \cdot 2$	15.2	15.2
October	19%	19.1	19.1	19.4	19.5	195	$10 \cdot 1$	$15 \cdot 0$	18.5	186	19־	$20 \cdot 1$	20.4	$19 \cdot 8$	$10 \cdot 3$	18.7	18.5	18.8	$19 \cdot 2$	193	$19 \cdot 1$	$19 \cdot 4$	19.4	$19 \cdot 4$	$19 \cdot 4$	19.3
November	10.7	197	$19 \cdot 8$	20.0	20.2	203	$20 \cdot 3$	$20 \cdot 5$	30	19.5	200	$\because 0.2$	19.9	$10 \cdot 6$	$10 \cdot 3$	$18 \cdot 2$	$19 \cdot 2$	$19 \cdot 4$	19-4	195	19%	19.6	19.7	197	187	19.8
December	$20 \cdot 1$	$20 \div$	203	$20 \cdot 3$	$2 \cdot 5$	20.1	$\because 0.8$	$21 \cdot 4$	21%	205	20.0	198	$10 \cdot 7$	$10 \cdot 8$	$10 \cdot 8$	200	20.0	$20 \cdot 0$	$20 \cdot 1$	201	$20 \cdot 1$	20.2	20.2	20\%	20.1	$20 \cdot 2$
Means	17%	17.3	$17 \cdot 3$	$17 \cdot 1$	17.5	$17 \cdot 6$	$17 \cdot 6$	17.7	17%	171	17.4	17.7	17.7	174	17.1	16.8	18.7	16.9	17.1	172	17.2	173	173	17.3	17.3	17.3

Vow. IX.]
Diuinal Inequality of the Declination at Ėodaikānal as deduced from the preceding $\dot{T}_{\text {able }}$.

Hours.	Mid.		2	3	4	5	6	7	8	${ }^{9}$	10	${ }^{11}$	Noon.	13	${ }^{1 *}$	15	16	17	18	19	${ }^{20}$	${ }^{21}$		23	mid.
Winter.																									
$\begin{gathered} 1914 \\ \text { Monthe. } \end{gathered}$,	,					,		,		,			,	,	,	,	,	,	,	,	,
Janary .	+0.2	+0.2	+0.1	0	-0.1	-0.2	-0.4	-0.7	-0.8	-0.5	-0.4	-0.5	-0.2	+0.2	+0.6	+0.9	+0.9	+0.4	+0.3	+0.3	+0,3	+0.2	+0.2	+0.2	$+0.2$
Febrasry	0	+0.1	$+0.1$	$+0.1$	0	-0.1	-0.1	-0.2	-0.5	-0.7	-0.7	-0.8	-0.6	0	+0.6	+1.0	+1.1	+0.7	$+0.3$	+0.3	+0.1	+0.1	0	0	0
March	0	0	0	0	0	-0.1	-0.1	0	+0.3	+0.4	$+0: 1$	-0.1	-0.6	-0.9	-0.6	-0.2	+0.3	$+0.3$	+0.1	0	-0.1	-0.1	0	0	0
October	-0.1	-0.1	-0.1	-0.1	-0.2	-0.2	-0.1	+0.4	+0.8	+0.7	+0.1	-0.8	-1.1	-0.5	0	+0.6	+0.8	+0.5	+0.1	0	-0.1	-0.1	-0.1	-0.1	-0.1
November	+0.1	+0.1	0	-0.2	-0.4	-0.5	-0.5	-0.7	-0.4	-0.1	-0.2	-0.4	-0.1	+0.2	+0.5	+0.6	+0.6	+0.4	+0.4	+0\%	+0.2	$+0.2$	+0.1	$+0.1$	+0.1
Decomber	+0.1	0	-0.1	-0.1	-0.3	-0.4	-0.6	-1.2	-09	-0.3	+0.2	+0.4	+0\%	+0.4	+0.1	+0.2	$+0.2$	+0.2	+0.1	+0.1	+0.1	0	0	0	$+0.1$
Means	0	0	0	-0.1	-0.2	-0.3	-0.3	-0.4	-0:3	-0.1	-0.1	-0.4	-0.4	-0.1	$+0 \cdot 2$	+0.5	+U'6	+0.4	+0.2	+0.1	$+0.1$	0	0	0	0

April	02	+0.2	+0.2	+0.2	+0.2	+0\%	+0.3	+0.8	+1.0	+0.8	+0:3	-0.3	-1.0	-1.2	-0.8	-0.3	+0.1	+0.2	+0	-0.3	-0.4	-0.3	-0.1	-0.1	$+0.2$
May	. +0.1	+0.1	+0.2	+0.2	+0.2	+0:3	+1.0	+1.5	+17	+1.0	+0.1	-10	-1.5	-1.5	-1.1	-0.5	-0.1	+0.2	+0.1	-0.2	-0.2	-0.2	-0.1	0	+0.1
June	. +0.3	$+0 \cdot 1$	+0.4	+0.1	+0.6	+0.5	+10	+1/6	$+1 \cdot 6$	+1.1	0	-0.8	-1.5	-15	-1.0	-0.5	0	0	-0.2	-0.4	-0.4	-0.4	-0.2	0	$+0.2$
July	- 0	+0.1	+0.3	+0.3	+0.4	+0.6	+1/1	+1.9	+19	+1.1	-0.2	-0.8	-15	-1.7	-13	-0.6	-0.1	+0.1	0	-0.2	-0.2	-0.2	-0.2	-0.1	0
August	. 0	0	+0.1	+0.2	+0.2	+0.3	$+1 \cdot 2$	+1:9	+1:9	+1.0	-0.2	-1.3	-2.1	-1.9	-1.4	-0.6	0	+0.5	+0:3	-0.2	-0.2	-0.3	-0.3	-0.1	0
September	-0.1	- ${ }^{0} 1$	0	0	$+0.1$	+0.3	+1.0	+1.9	+2.1	+1.2	-0.2	-1.6	-2.1	-20	-12	-0.1	+0.5	+0.6	+0.1	-0.1	-0.2	-0.2	-0.2	-0.2	-0.1
Means	0	+0.1	+0.2	+0.2	+0*2	+0.3	+0.9	+1.6	$+1^{17}$	+10	0	-1.0	-17	-17	-12	-0.5	0	+0.2	0	-0.3	-0.3	-0.9	-0.2	-0.1	0

[^3]Hourly Means of Horizontal Force in C．G．S．Unitw（Corrected for temperature）at Korlaikīnal from all available days in 1914.

Honra	mid．	1	3	3	＋	5	6	7	＊	9			Noon．	13	14	15	${ }^{16}$	${ }^{17}$			20	${ }_{21}$	${ }^{23}$	${ }^{23}$	Mid．	Meass．
－37000 c．g．s．+ Wint																										
$\begin{gathered} 1914 \\ \text { Months. } \end{gathered}$	γ	7	γ	γ																						
January	558	580	560	561	560	560^{2}	$56: 3$	570	581	596	803	60.3	59.4	58：	568	562	561	56：3	562	560	559	558	557	557	558	569
February	561	561	56：3	56.6	565	565	565	569	583	602	${ }_{6} 17$	${ }_{6} 23$	${ }^{6} 5$	598	579	569	566	568	567	563	560	560	558	${ }_{560}$	561	575
March	55.4	555	555	556	557	557	556	559	57.	597	618	628	623	606	588	572	563	559	558	556	555	555	552	553	555	571
October	558	557	558	560	560	560	535	56.	58.4	611	638	831	617	593	572	561	558	560	559	557	557	556	556	557	557	572
Noverber	556	556	557	558	561	560	563	570	585	600	013	613	003	590	577	567	563	561	557	554	553	554	554	554	556	570
December	658	557	5 58	559	559	560	562	569	577	588	600	607	808	602	590	579	568	562	562	561	561	558	557	558	556	572
Means	557	558	558	560	560	561	561	567	581	599	613	018	610	595	579	568	563	562	561	559	558	557	558	557	557	572

	令
	\％
	\％
	吕
	品
	\％
	吕
	品
逼	间
为	\％
\％\％\％\％\％呂咢	5
	谷
퓽	$\stackrel{\square}{5}$
凩 サ®	$\stackrel{\oplus}{\oplus}$
\％\％¢\％\％잉 \％\％\％	\because
	\％
	哭
	$\%$
	\％
	硈
	\％
菅器品品品莒	8
問	$\%$
	雫
	\because

Diurnal Inequality of the Horizontal Force at Kodaikannal as deluced from the preceding Table．

Hoars．	Nid．	1	2	3	4	5	6	7	8	9	10	11	Noon．	13	14	15	16	17	18	10	20	${ }^{23}$	22	23	Mid．
Winter．																									
$\begin{gathered} 101 \downarrow \\ \text { Months. } \end{gathered}$	γ	7	γ	γ	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	γ	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	γ	γ	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ
January	－11	－0	－0	－－8	－9	－7	－6	＋1	＋12	＋27	＋34	＋34	＋25	＋13	－1	－7	－8	－6	－7	－9	-10	－11	－12	－12	-11
February	－14	－14	－12	－11	－10	－ 10	－10	－6	＋8	＋27	＋42	＋48	＋ 40	＋23	＋4	－6	－9	－7	－8	－12	－15	－15	－17	－15	-14
March	－17	－16	－16	－15	－14	－14	－15	－12	＋3	＋26	＋47	＋58	＋52	＋35	＋17	＋1	－8	－12	-13	－15	－16	－16	-19	－18	－16
October	－－16	－15	－14	－12	－12	-12	－14	－8	＋12	＋39	$+56$	＋59	＋45	＋21	0	－11	－14	－12	-13	－15	－15	－16	-16	－15	－15
November	-1.4	－1．1	-13	－11	－9	-10	－7	0	＋15	＋30	＋ 43	＋43	＋33	＋20	＋7	－3	－7	－9	－13	－ 16	－17	－16	－16	-16	-14
Decernber	－1i	－－15	－1．4	-13	－13	－12	-10	－3	＋5	＋16	＋28	＋35	＋37	＋30	＋18	＋7	－4	－-10	－10	－11	－11	－14	－－15	-1.4	－16
Means	－15	－1．4	-13	－12	-12	－11	－11	－5	＋9	＋27	＋41	$+46$	＋38	＋23	＋7	－4	－0	－10	－11	－13	－14	-15	－16	-15	-15

Summer

$\stackrel{9}{9}$	$\stackrel{m}{1}$
可可 $\overrightarrow{1} 7$	$\stackrel{\square}{1}$
	1
	1
	9
	1
	$\stackrel{m}{1}$
荷	$\stackrel{\square}{1}$
	1
	i
9×9	＋
	$\stackrel{\text { \％}}{+}$
	$\stackrel{3}{+}$
	$\stackrel{+}{+}$
	$\stackrel{+}{+}$
¢	$\stackrel{+}{+}$
	7
7 \uparrow i 0 T	？
$\stackrel{\square}{1} 7$ i i i i $i \vec{l}$	T
¢	7
号 뀍ipir	7
	7
	7
	줙

Hourly Means of Vertical Force in C．G．S．Units（Corrected for temperature）at Kodaikinnal frona all avaiiable days in 1914.

Hoars	Bid．	1	2	3	＋	5	${ }^{6}$	7	8	9	10		Noon．	13	14	$1:$	13	17	18	19	${ }^{20}$	21	${ }^{22}$	${ }^{23}$	Mid	Meana．
reowe．c．s．+ Winter．																										
$\begin{aligned} & \text { 191t } \\ & \text { Month. } \end{aligned}$	γ	γ	γ	γ	γ	γ		γ	γ	γ	γ	7	γ	γ	γ	r	7	γ	γ	γ	γ	γ	γ	7	γ	γ
January	719	720	719	719	210	719	719	218	716	713	708	710	712	214	716	720	718	715	717	717	718	718	718	719	719	717
February	725	7 ± 5	728	725	725	7\％4	\％ 25	723	119	713	709	707	711	716	719	${ }^{2} 2$	722	719	220	221	721	723	723	724	725	720
March	733	733	733	739	733	733	73.4	735	733	${ }_{2} 28$	72］	714	711	711	71.4	717	721	736	728	729	731	731	731	733	734	727
October	771	77.	772	772	772	773	775	773	767	760	751	748	752	758	762	7 E 4	765	765	767	768	769	771	771	773	772	766
November	782	782	782	752	783	782	78．	78.	781	777	772	770	770	768	770	773	775	776	777	778	780	781	782	782	783	778
December	778	779	780	750	780	779	779	778	779	779	777	773	768	762	780	76.	770	773	775	777	778	778	778	779	778	775
Meens	751	752	752	752	752	752	752	752	749	745	7.0	737	737	738	7.10	744	745	746	747	748	749	750	751	752	752	747

	只
	告
	i：
	寿
	\％
	通
	$\stackrel{1}{6}$
员足吕员婴吕	只
융	$\%$
	\％
	茄
	$\stackrel{9}{2}$
	哭
큧	：
	$\stackrel{\infty}{\circ}$
	$\stackrel{1}{2}$
号串员莒吕员	$\stackrel{\infty}{*}$
长	员
	$\stackrel{0}{0}$
	\％
聿 욜 曲哭员志	名
	吕
式気员怘哭是	员
옹융	${ }^{\circ}$
忒要吕员哭管	\％
	\％
	哭

Diurnal Inequality of the Vertical Force at Kodaikānal as deduced from the preceding Table.

Hours	Mid.		2	3	4	5	6	7	8	9	10	${ }^{11}$	Noon.	13	14	15	16	17	${ }^{18}$	19	${ }^{20}$	${ }^{21}$	22	28	Mid.
Winter.																									
$\begin{gathered} 191.4 \\ \text { Months. } \end{gathered}$	7	γ	7	γ	$\boldsymbol{\gamma}$	γ	γ	γ	γ	\%	γ	7	γ	γ											
Janaary	+2	+3	+2	+2	+2	+2	+2	+1	-1	-4	-8	-7	-5	-3	-1	+3	+1	-2	0	0	+1	+1	+1	+2	+2
February	+5	$+5$	+6	+5	+5	+1	+5	+3	-1	-7	-11	-13	-9	-4	-1	+3	+2	-1	0	+1	+1	+3	+3	+4	+5
March	+5	+6	+6	+6	+6	+6	+7	+8	+6	+1	-6	-13	-16	-16	-13	-10	-6	-1	+1	+2	+4	+t	+4	+6	+7
October	+5	+6!	+6	+6	+6	+7	+9	+ 7	+1	-6	-15	-20	${ }^{-14}$	-8	-4	-2	-1	-1	+1	+2	+3	+5	+5	+7	
Norember	+4	+4	+	+1	+5	+4	+4	+4	+3	-1	-6	-8	-8	-9	-8	-5	-3	-2	--1	0	+2	+3	+4	+	
December	+3	+1	+	+5!	+5	+1	+4	+3	+ 4	+4	+2	-2	-7	-13	-15	-11	-5	-2	0	+2	+2	+3	+3	+4	+3
Means	+	+5	$+5$	+	$+5$	+5	+5	$+5$	$+2$	-2	-i	-10	-10	-9	-7	-3	-2	-1	0	+1	+2	+3	$+4$	+5	+5

Hourly Means of the Dip as detormined at Kodaikānal from all available days in 1914.

Hours.	Mid.	1	2	3	4	5	6	7	8	9	10		Noon.	13	14	15	16	17	18	13	20		23	23	Mid.	Meana.
					$\mathrm{N} 4^{\mathbf{0}}+\quad$ Winter																					
1914 Months.	,	,	,	,	,	,	,	،	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,
January	8.5	8.5	$8 \cdot 4$	8.4	8.4	$8 \cdot 4$	8.4	$8 \cdot 3$	8.0	7.7	7.2	7.3	$7 \cdot 6$	$7 \cdot 8$	$8 \cdot 1$	8.5	$8 \cdot 3$	$8 \cdot 1$	8.2	8.3	S.4	8.4	$8 \cdot 4$	8.5	$8 \cdot 5$	8.2
February	$0 \cdot 0$	90	$9 \cdot 1$	$0 \cdot 0$	$0 \cdot 0$	$8 \cdot 9$	$9 \cdot 0$	8.7	$8 \cdot 3$	$7 \cdot 6$	7.2	6.8	$7 \cdot 3$	7.9	8.3	8.7	8.7	$8 \cdot 4$	8.5	$8 \cdot 6$	$8 \cdot 6$	8.8	8.8	$8 \cdot 9$	$9 \cdot 0$	8.5
March	97	9.7	0.7	87	97	07	$9 \cdot 8$	$0 \cdot 9$	96	$9 \cdot 0$	$8 \cdot 2$	7.5	$7 \cdot 3$	7•4	7.8	$8 \cdot 2$	$8 \cdot 6$	$9 \cdot 1$	93	$9 \cdot 4$	$9 \cdot 6$	$9 \cdot 6$	$9 \cdot 6$	9.8	9.8	$9 \cdot 1$
October	13.2	$13 \cdot 3$	$13 \cdot 3$	$13 \cdot 3$	$13 \cdot 3$	$13 \cdot 4$	13.5	$13 \cdot 3$	$12 \cdot 6$	$11 \cdot 8$	10.9	10.4	11.1	11.8	$12 \cdot 3$	12.5	12.6	$12 \cdot 6$	12.8	$12 \cdot 9$	13.0	13.2	13.2	$13 \cdot 4$	$13 \cdot 3$	12.7
November	14.2	1.2	$1{ }^{1} \cdot 2$	$1.1 \cdot 2$	$1+3$	$14 \cdot 2$	$14 \cdot 2$	1.4.1	13.9	$13 \cdot 4$	12.9	$12 \cdot 7$	128	$12 \cdot 8$	13.0	$13 \cdot 3$	13.5	136	13.7	$13 \cdot 8$	140	$14 \cdot 1$	$14 \cdot 2$	142	14.3	13.7
December	$13 \cdot 8$	$13 \cdot 9$	14.0	1.40	140	13.9	$13 \cdot 9$	13.7	13.8	$13 \cdot 7$	13•t	130	$12 \cdot 6$	12.1	12.0	$12 \cdot 1$	$13 \cdot 0$	$12 \cdot 3$	13.5	13.7	137	$13 \cdot 8$	13.8	13.4	$13 \cdot 8$	13.5
Means	11.1	114	J\%	11.4	115	11.4	11.5	113	11.0	105	10.0	9. 8	9.8	10.0	$10 \cdot 3$	$10^{\prime} 6$	10.8	102	11.0	11.1	11\%2	113	113	$11 \cdot 5$	11.5	100

Summer.																										
April	$10 \cdot 1$	10.5	$10 \cdot 4$	$10 \cdot 5$	10.4	$10 \cdot 5$	$10 \cdot 7$	$10 \cdot 7$	10.0	$0 \cdot 1$	8.1	$7 \cdot 7$	7-6	$8 \cdot 1$	8.8	$9 \cdot 6$	10.1	$10 \cdot 0$	$0 \cdot 9$	10.0	$10 \cdot 1$	$10 \cdot 2$	104	10.4	$10 \cdot 5$	$0 \cdot 8$
May	$11 \cdot 1$	$11 \cdot 1$	$11 \cdot 1$	11.0	11.0	11.1	$11 \cdot 4$	$11 \cdot 3$	10%	100	$9 \cdot 1$	8.7	$8 \cdot 7$	$0 \cdot 0$	95	$10 \cdot 2$	$10 \cdot 8$	$10 \cdot 9$	$10 \cdot 8$	107	$10 \cdot 8$	$10 \cdot 9$	110	11.0	$11 \cdot 1$	10.5
June .	$12 \cdot 0$	$12 \cdot 0$	$12 \cdot 0$	$12 \cdot 0$	120	$12 \cdot 0$	$12 \cdot 3$	$12 \cdot 3$	$12 \cdot 2$	11.6	$11 \cdot 3$	$10 \cdot 8$	$10 \cdot 6$	$10 \cdot 3$	$11 \cdot 2$	11.7	$11 \cdot 8$	11.8	11.7	11.7	11.7	11.9	$12 \cdot 0$	12.0	12.0	11.7
July .	12.3	$12 \cdot 3$	123	$12 \cdot 2$	$12 \cdot 2$	$12 \cdot 3$	12.5	$12 \cdot 5$	$12 \cdot 0$	$11 \cdot 4$	$11 \cdot 1$	$10 \cdot \theta$	$11 \cdot 1$	$11 \cdot 3$	$11 \cdot 3$	12•1	$12 \cdot 4$	$12 \cdot 5$	$12 \cdot 1$	12.0	$12 \cdot 0$	12-1	12'2	$12 \cdot 3$	12.3	12.0
Augast	12.8	$12 \cdot 8$	$12 \cdot 8$. $12 \cdot 8$	$12 \cdot 8$	$13 \cdot 0$	$13 \cdot 2$	$13 \cdot 1$	12.4	11.5	$10 \cdot 8$	$10 \cdot 8$	11•1	$11 \cdot 9$	$12 \cdot 9$	$13 \cdot 4$	$13 \cdot 5$	$13 \cdot 2$	12.5	12.5	12.7	1277	12.7	$12 \cdot 7$	$12 \cdot 8$	12.5
September	$13 \cdot 3$	$13 \cdot 2$	13.2	133	$13 \cdot 3$	$13 \cdot 4$	$13 \cdot 7$	135	$12 \cdot 5$	11.0	$10 \cdot 0$	$9 \cdot 8$	$10 \cdot 3$	$11 \cdot 1$	$12 \cdot 1$	12-7	13.0	12.8	$12 \cdot 6$	12.7	$12 \cdot 3$	$13 \cdot 0$	$13 \cdot 1$	13.2	13.3	12.5
Means	12.0	120	12.0	12.0	120	$12 \cdot 1$	$12 \cdot 3$	$12 \cdot 2$	11.6	$10 \cdot 8$	10.1	$9 \cdot 8$	$9 \cdot 9$	10.4	11.1	11.6	11.9	11.9	11.6	11.6	11.7	1188	$11 \cdot 9$	11.9	12.0	11.5

Diurnal Inequality of the Dip at Kodaikanal as deduced from the preceding Table.

G.-Abstract showing approximate magnetic values at stations observed at by No. 18 Party during seasou 1914-15.

Repear Stations.

Alstract showing approximate magnetic valucs at stations obscived at by No． 18 Parly during season 1914－15－contd．

Repeat Stationg－contd．

		Latitade．	Longitade．	－Dip．	Declination．	Horizontal F＇orce．	
		－＇＂	－＇$\quad 1$	－，	－．${ }^{\text {a }}$	C．G． 8 ，	
XX．Site 1	Alryab	\cdots	．．．	$25 \quad 47$	E $0 \quad 7$	－3858	
XXI．Site 1	Silchar or Ceschār	$24 \quad 49 \quad 14$	$\begin{array}{lll}92 & 47 & 27\end{array}$	350	＂ $0 \quad 30$	－3709	
Ditto	Ditto	\ldots	．．．	$35 \quad 2$	＂ $0 \quad 32$	． 8707	
XXII．Site 3	Dibrugarh	$27 \quad 29 \quad 12$	$\begin{array}{lll}94 & 54 & 35\end{array}$	$39 \quad 49$	＂ 0039	$\cdot 3590$	
Ditto	Do．	．．．	．．．	3949	＂ 038	－3593	
46	Ruk Junction	$27 \quad 48 \quad 23$	$\begin{array}{lll}68 & 38 & 20\end{array}$	$\begin{array}{ll}10 & 18\end{array}$	＂ 20	－3337	
46	Ditto	．．	：••	$40 \quad 17$	＂ 159	－3340	
71	Lahore	$31 \quad 35 \quad 50$	$74 \quad 18 \quad 50$	$46 \quad 45$	＂ $2 \quad 16$	－3191	
71	Do．	\cdots	\cdots	$\begin{array}{ll}46 & 47\end{array}$	1＂ $2 \quad 46$.9191	
88	Peshãwar	$34 \quad 0 \quad 40$	$\begin{array}{lll}71 & 33 & 40\end{array}$	4987	， 34.3	$\cdot 3084$	
88	Do．	\cdots	．．．	$49 \quad 35$	， 342	－ 9065	
92	Kundiēn	$\begin{array}{lll}32 & 27 & 30\end{array}$	7128	$48 \quad 19$	$\therefore 320$	－3085	
92（a）	Do．	$\begin{array}{lll}32 & 27 & 30\end{array}$	$\begin{array}{lll}71 & 28 & 20\end{array}$	4821	， 320	$\cdot 3083$	
105	Sachin	21 \＆ 40	$72 \quad 52 \quad 40$	$28 \quad 20$	， 010	－3654	
105	Do．	．．．	\ldots	2818	＂ 098	$\cdot 3657$	号
124	Bikaner	$28 \quad 0 \quad 40$	$73 \quad 18 \quad 60$	$40 \quad 53$	＂ 150	－3378	ED
12．1（a）	Io．	$28 \quad 0 \quad 40$	73	1050	， 151	$\cdot 3377$	\pm
130	Ajmer	$\begin{array}{lll}26 & 27 & 30\end{array}$	74.3880	33 4	＂ 143	$\cdot 3.459$	曻
130	Do．	．．．	． 0	384	＂ 143	3450	吢
134	Mirpur Khas	$25 \quad 31 \quad 40$	$69 \quad 0 \quad 40$	$36 \quad 28$	， 145	， 3440	品
134（a）	Do．	$\begin{array}{lll}25 & 31 & 19\end{array}$	$\begin{array}{lll}69 & 1 & 40\end{array}$	$36 \quad 28$	1 185	3430	－
139	Viramgex	$23 \quad 8 \quad 10$	$72 \quad 3 \quad 30$	328	1） 0055	3565	\％
139	Do．	\cdots	．．	328	， 054	$\cdot 3567$	．
172	Dhond	$18 \quad 28 \quad 0$	$\begin{array}{llll}74 & 35 & 10\end{array}$	2311	＂ 00	$\cdot 3708$	
172	Do．	\ldots	\cdots	23 3	$\because 00$	$\cdot 3713$	
175	Hotgi	$\begin{array}{llll}17 & 33 & 40\end{array}$	$76 \quad 0 \quad 20$	216	W 08	－375 \downarrow	
175	Do．	＂•	\cdots	$20 \quad 69$	＂ 08	$\cdot 3761$	
181	Guntakal	$15 \quad 10 \quad 48$	$\begin{array}{lll}77 & 22 & 57\end{array}$	$15 \quad 56$	＂ 0.47	$\cdot 3808$	
181	Do．	\cdots	．．．	$15 \quad 57$	＂ 015	$\cdot 3804$	
186	Arkonam	13430	$70 \quad 40 \quad 20$	$10 \quad 48$	$\cdots 118$	－3870	
186	Do．	．．．	．．＇	$10 \quad 50$	＂ 118	－38u．	
187	Perambur	$13 \quad 6 \quad 40$	$80 \quad 15 \quad 0$	1066	， 111	－3854	
187	I） 0	．．．	－	$10 \quad 57$	＂I 11	－3850	
199	Cannmiore	$11 \quad 52 \quad 30$	$75 \quad 220$	95	＂ 139	$\cdot 3816$	
190	Do．	\cdots	．．	96	， 141	－3816	
207	Birūr	$\begin{array}{lll}18 & 35 & 50\end{array}$	$\begin{array}{lll}75 & 58 & 10\end{array}$	$12 \quad 18$	， 12	＇3807	
207	Do．	－	\ldots	$12 \quad 19$	＂ 058	－3803	
216	Miraj	$\begin{array}{lll}16 & 49 & 10\end{array}$	$\begin{array}{llll}74 & 38 & 10\end{array}$	207	， $0 \quad 27$	．9776	

Abstract showing approximate magnetic values at stations observed at by No． 18 Party during season 1914－15—contd．

Repfat Stations－contd．

		Latitute．	Longitade．	Dip．	Declination．	Horizontal Force	
		＂	－＂＂	－，	－	C．G．${ }^{\text {b }}$	
216	Miraj	．．．	\cdots	$20 \quad 11$	E $0 \quad 24$	－3773	
223	Manmād	$20 \quad 14 \quad 40$	$\begin{array}{lll}74 & 26 & 20\end{array}$	$26 \quad 44$	， 036	－3666	
223（a）	Do．	$20 \quad 14 \quad 40$	74， $26 \quad 20$	2655	， 033	－3715	
232 ＊）	Delhi ．	$28 \quad 4020$	$\begin{array}{llll}77 & 14 & 20\end{array}$	4152	E 1446	－339．4	
232（a）	Do．	\ldots	．．．	4151	， 147	－3：95	
283	Sirsa	$\begin{array}{lll}29 & 32 & 10\end{array}$	$75 \quad 240$	4310	， 222	－3328	
283	Do．	．．．	．．．	4311	＂ 222	． 3327	
328（a）	Tinnevelly	88440	$\begin{array}{lll}77 & 42 & 30\end{array}$	120	W 22	－3806	
328（a）	Do．	．．．	．．．	121	， 21	$\cdot 3804$	
332	Mandapam	$\begin{array}{lll}9 & 16 & 50\end{array}$	$\begin{array}{lll}79 & 8 & 30\end{array}$	158	＂ 150	－3838	
332	Do．	．．．	．．．	158	， 150	－3839	
337	Tanjore	$\begin{array}{lll}10 & 46 & 40\end{array}$	$\begin{array}{lll}79 & 8 & 20\end{array}$	$5 \quad 9$	＂ 146	－3837	
337（a）	Do．	$\begin{array}{lll}10 & 46 & 40\end{array}$	$79 \quad 8 \quad 20$	$5 \quad 10$	＂ 1 1 44，	－3835	
375	Parbhanj	$\begin{array}{lll}19 & 15 & 20\end{array}$	$78 \quad 4650$	$25 \quad 15$	E 0 l	－3799	
375（a）	Do．	$\begin{array}{lll}19 & 15 & 20\end{array}$	$\begin{array}{llll}76 & 46 & 50\end{array}$	256	W 003	－3696	\％
384	Bezmâda	$\begin{array}{lll}16 & 31 & 0\end{array}$	$\begin{array}{lll}80 & 36 & 50\end{array}$	$18 \quad 20$	， 052	－3828	吕
384（a）	Do．	$\begin{array}{lll}16 & 31 & 0\end{array}$	$\begin{array}{llll}80 & 36 & 50\end{array}$	$18 \quad 20$	＂ 056	＇3825	$\begin{aligned} & \text { e } \\ & : \end{aligned}$
493	Mānikpur	$25 \quad 310$	$81 \quad 6 \quad 20$	$35 \quad 36$	E $0 \quad 58$	－3589	白
483	Do．	\cdots	\cdots	$35 \quad 35$	＂ 059	－3590	\％
489	Monghyr	$25 \quad 23 \quad 10$	$\begin{array}{lll}86 & 27 & 50\end{array}$	$36 \quad 0$	＂ $0 \quad 47$	－3633	E
489	Do．	\cdots	．．．	360	＂ $0 \quad 47$	－3683	－
500	Sini	$22 \quad 470$	$85 \quad 5650$	$30 \quad 57$	030	－3718	告
600	Do．	．．．	．．．	$30 \quad 65$	030	－3751	\％
518	Katarnian Ghat	$28 \quad 19 \quad 50$	$81 \quad 750$	$41 \quad 16$	＂ 142	$\cdot 3445$	
518	Do．	\cdots	\cdots	4111	＂ 143	－3445．	
530	Bettiah	$20 \quad 48 \quad 50$	$84 \begin{array}{lll}84 & 31\end{array}$	$38 \quad 39$	． 117	$\cdot 3643$	
530	Do．	．．．	\cdots	$38 \quad 40$	＂ 15	$\cdot 3544$	
544	Bāran	$25 \quad 5 \quad 32$	$\begin{array}{lll}76 & 30 & 30\end{array}$	365	， 16	－3522	
544	Do．	．．．	\cdots	36 6	， 10	－3523	
545	Bina	$24 \quad 10 \quad 50$	$78 \quad 110$	$\begin{array}{ll}33 & 98\end{array}$	＂ 056	－3572	
545	Do．	．．．	\cdots	3341	， 055	－3573＇	
557	Indore	$22 \quad 42 \quad 8$	$\begin{array}{lll}75 & 52 & 40\end{array}$	3125	， 030	－3679	
657	Do．	－	\cdots	3124	＂ 030	－3681	
673	C＇aminore	$\begin{array}{ll}26 & 27\end{array}$	$80 \quad 210$	$38 \quad 4$	＂ 122	－3527	
573	Do．	．．．	．．．	384	，1 23	－3527	
698	Kñthgodām	$29 \quad 15 \quad 19$	$\begin{array}{lll}79 & 32 & 50\end{array}$	$42 \quad 53$	＂ $2 \cdot 1$	－3371	
528	Do．	＇．	．．	4253	＂ 22	－3371	
1，122	Balasore	2130	86	$28 \quad 39$	， 05	$\cdot 3773$	

Abstruct showing approximate magnetic values at stations observed at by No． 19 Party during season 1914－15－concld．

Repeat Stationg－coneld．

Berlal No．	Name of Station．	Latitude．	Longitade．	Dip．	Decllnatlon．	Horlzontal Foree．	Reyabis．
		－＇＂	－＇＂		－，	c．a．B．	
692	Balasore	\ldots	．．．	$28 \quad 36$	E 06	－3774	
699	Berhampur （Ganjām）．	$\begin{array}{lll}19 & 18 & 10\end{array}$	84． $48 \quad 40$	248	W 015	$\cdot 3824$	
699	Do．	．	\cdots	$24 \quad 10$	＂ 015	－3823	
710	Cumbum	$\begin{array}{lll}15 & 35 & 50\end{array}$	$79 \quad 6 \quad 40$	$\begin{array}{ll}16 & 48\end{array}$	＂ 110	－3824	
710	Do．	．．．		$16 \quad 49$	， 111	－3827	
746	Clıānda	$\begin{array}{lll}19 & 57 \quad 50\end{array}$	79	$25 \quad 43$	E 0 1	－3748	
746	Do．	．．．	\ldots	2546	， 0 ¢	－3744	
765	Raipur	$21 \quad 15 \quad 50$	$81 \quad 38 \quad 20$	28 31	， 015	－3725	\pm
765	Do．	．．．	．．．	2830	， 015	－3723	${ }^{80}$
779	Amrīoti	$\begin{array}{lll}20 & 55 & 30\end{array}$	$\begin{array}{lll}77 & 45 & 50\end{array}$	$28 \quad 13$	W 0	－9646	－
779	Do．．	．．．	．．．	$28 \quad 13$	， 03	－3650	\pm
831	Sāntāhār	$\begin{array}{lll}24 & 48 & 10\end{array}$	$88 \quad 59 \quad 20$	3456	E 045	－3683	日
831	Do．	．．	．．．	3454	$\cdots \quad 045$	$\cdot 3682$	7
871	Lāksām	$23 \quad 15 \quad 40$	$\begin{array}{lll}91 & 7 & 20\end{array}$	3156	， 023	$\cdot 3753$	宿
871	Do．	．．．	．．．	3166	， 024	$\cdot 2754$	晶
961	Mandalay	$21 \quad 69 \quad 50$	$96 \quad 6 \quad 30$	2926	， 09	－3823	出
961	Do．	\ldots	．．	$29 \quad 26$	， 00	－3823	\％
975	Myitkyine	$25 \quad 23 \quad 20$	$\begin{array}{lll}97 & 24 & 10\end{array}$	$36 \quad 22$	＂ 11	$\cdot 3634$	＇
975	Do．	．．．	．．．	$\begin{array}{ll}36 & 17\end{array}$	， 13	－3634	．${ }^{\text {g }}$
977	Bhamo	$24 \quad 15 \quad 30$	$\begin{array}{lll}37 & 13 & 10\end{array}$	3351	， 020	＇3748	圭
977	Do．	\cdots	\ldots	$33 \quad 53$	\％ 023	－3749	
1068	Prome	$\begin{array}{lll}18 & 49 & 40\end{array}$	$95 \quad 13 \quad 20$	2251	W 00	－3008	
1068	Do．	$0 \cdot$	．．	2252	， 0 \％	－3904	
1071	Bassein	$16 \quad 46 \quad 20$	$94 \quad 44 \quad 30$	$\begin{array}{ll}18 & 16\end{array}$	， 08	－39．47	
1071	Do．	．．．	\cdots	$18 \quad 18$	， 08	$\cdot 3045$	
1195	Monlmein	$16 \quad 29 \quad 40$	$\begin{array}{lll}97 & 37 & 30\end{array}$	$17 \quad 44$	E 0	－3954	
1195	Do．	．．．	．．．	$17 \quad 43$	＂ 01	－3955	
1838	Barmer	$\begin{array}{lll}25 & 44 & 35\end{array}$	$\begin{array}{lll}71 & 26 & 40\end{array}$	376	， 143	$\cdot 3433$	
1338	Do．	．．．	．．．	376	， 141	$\cdot 343$ 2	
1402	Barrackpore	$22 \quad 46 \quad 29$	$\begin{array}{lll}88 & 21 & 39\end{array}$	311	， 028	－3745	

Old Station Reobseived．

NOTE．

The foregoing values of Dip，Declination and Horizontal Force are uncorrected for secular change， diurnal variation，instrumental differences，eto．，and are to be considered preliminary ralues only．

All longitudes are referable to that of the Madras observatory taken at the value of $80^{\circ} 14^{\prime} 54^{\prime \prime}$ east from Greenvioh．

At every station，except Karachi which had proviously been well marled，two values of each element are given in the tables，the upper values being those obtained at the sites bofore they were permanently marked by pillars this season and the lower values being thoso obtained at the sites after the pillars had been built．
＂a＂suffixed to a station number agningt the upper value indicates that it is a new site selected in some provious season and when suffixed to a station number against the lower value indicates that a flesh site bas been selected for the pillar built this senson．

The valuce ngainst station No．l402，Bartackpore，are those obtrined at a new repeat station establish ed this senson near the Barrackpore observatory which has now been olosed．

BASE LINE.

No. 19 PARTY.

Perbonnel.

Imperial Officers.

Major H. L. Croathwait, R. E., in charge to 23rd October 1914.
Captain W. E. Perry, R.E., in charge from 2dth October 1914 to 3lat August 1915.
From lat to 7th September and again from 24th to 30th September charge was held by the Officer in clarge of No. 16 Party in addition to his other duties.
Licutenant-Colonel C. H. D. Ryder, C.I.E., D.S O., R.F., in charge from 8th to 23rd September 1915.

Lower Subordinate Service.
1 Computer.

Progress was made with the erection of the Comparators and a motor-generator to transform the alternating current at 220 volts of the public supply to con. tinuous current at 100 volts which is required for the motors and heating ar. rangements of the Bar Comparator was. installed.

No Base Line work could be attempted as no officers were available.

COMPUTING AND TECHNICAL OFFICES.

By Mb, J. de Graaff Muntei, M.a.

Computing Office.

Perbonsel.

Imperial Officers.
Mr. J. de Graaff Hunter, M.A., in charge.
The eervices of Lieutennit K. Mason, R.E., were lent for about one month.

Provincial Officer.
Mr. Hanaman Prasad.
Computing Office.
Babu Ishan Chandra Deb, B.A., and eleven computers.
Five computers lent from the field parties for a portion of the year worked in the Computing Office.

Printing Office.
Mr. Sarat Kunar Mnkerji, Sub-Assistant Superintendent with 10 compositors, printers, etc.

TForkshops.
1 Head Artiticer with 8 fiters and carpenters,

Babu Hem Cbandra Banarji, B.A., was confirmed in the Computing Office on the transfer of Babu Dhirendra Nath Saba to the Upper Subordinate Service.

The present season has been quite unusual on account of the curtailment of field work in the parties.

This caused a number of computers from Nos. 13, 14 and 15 Parties to be without full employment in their respective parties. The services of these computers were accordingly placed at my disposal.

Triangulation Charts.-The compilation and publication of triangulation charts were recognised as a very important and also very long piece of work. Proceeding at the rate of the previous season the publication of the 900 charts promised to extend over 20 years. Still it had not previously been possible to employ a larger number of computers on this work. The present season gave opportunities of remedying this and a prospect of getting out the whole series in some two or three years, owing to the larger number of men available for the work. The first necessity was to improve the system on which the charts were produced. The old plan was to obtain all the topo. data from the clrcles concerned and to enmplete the G. T. data and such topo. work as was given in the Synoptical volumes at Dehra. This led to great delay as the circles could not always supply complete data at once, and constant reference had to be made to them. Moreover, the data had to be set up in very largo pajes to print at the side or on the back of the 4 miles $=1$ inch charts. This was very troublesome for the Printing Office. The size of type used had
to be varied according to the amount of data available, and in some cases sufficient room was not available even when the smallest type was used.

Ihese difficulties have been largely overcome by printing the data in the form of pamphlets, and in printing the portion available at Dehra independently of the modern topo. data available from the circles. The pamphlets recognise three classes :-(1) Geodetic triangulation, (2) Minor triangulation, (3) Intersected points.
(1) Geodetic triangulation, comprising both principal and secondary triangulation which has been computed rigorously. Some old triangulatiou observed as secondary, had been computed without taking account of spherical excess--a plan which inevitably leads to accumulation of azimuthal errors and inconsistencies between azimuths and co-ordinates. Such triangulation could not rightly be classed as geodetic unless its recomputation was effected. Principal and secondary triangulations were classed together, beoause it was found that some good secondary was better than the less accurate principal. In this connection it is to be remembered that the triangulation series under review date from 1831.

A criterion of strength of triangulation has been adopted from which au estimate of the relative strengths of the several series is-possible. This criterion takes account of the mean triangular error, the nature of the figures (whether simple triangles or braced figures) and the average length of side; and the characteristic quantity M is proportional to the probable displacement of a point from its true position after the triangulation has proceeded a given distance. The following table gives the values of M and some other particulars for the geodetic triangulation of India.
The following notation is used :$\frac{2 a+\gamma}{a+\beta+\gamma+8}$ and a, β, γ, δ are the numbers of triangles, quadrilaterals, pentagons and higher odd-sided figures, hexagons and higher even-sided figures respectively.

The Series of the G. T. S. Triangulation in India and Burma, arranged in chronological order-contd.

$$
\Rightarrow \Rightarrow H
$$

$\vdots \quad \vdots \quad \vdots$
引＇$\vdots \quad \vdots \quad \vdots$

\dagger	$\frac{m}{\infty}$	\neg	$\stackrel{\infty}{=}$	$\underset{\sin ^{-}}{\overline{=}}$	ผ	\equiv	$\stackrel{H}{\underset{\sim}{*}}$	\cdots	$\stackrel{10}{=}$	\sqcap	$\stackrel{\infty}{\infty}$	$\underset{\sim}{-}$								$\stackrel{*}{*}$	$\stackrel{\text { No }}{=}$			
\cdots				\cdots	∞	8		∞	！	；	；	\checkmark	$\underset{\sim}{7}$	7	F	8	＊	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\infty}$		$\underset{\sim}{-7}$	กิ	－	－
تِ	$\stackrel{\text { N }}{N}$	$\begin{aligned} & 0 \\ & \text { in } \end{aligned}$	荡	$\begin{aligned} & 9 \\ & \dot{\sim} \end{aligned}$	$\underset{\mathbf{N}}{\mathbf{N}}$	$\begin{aligned} & \text { Ò } \\ & \stackrel{\text { ® }}{2} \end{aligned}$	© ì	$\begin{aligned} & \text { On } \\ & \stackrel{0}{0} \end{aligned}$	－	$\begin{aligned} & \text { N } \\ & \text { en } \end{aligned}$	$\stackrel{\sim}{*}$	$\stackrel{\varphi}{\dot{\infty}}$	$\stackrel{\rightharpoonup}{\dot{-}}$	$\stackrel{0}{0}$	ث	$\stackrel{9}{6}$	$\underset{i}{i}$	冎	－	$\stackrel{N}{\stackrel{\rightharpoonup}{0}}$	9	＋	－	¢
$\underset{i}{\vec{i}}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \end{aligned}$	\# \#	$\begin{aligned} & \text { nip } \\ & \text { in } \\ & 0 \end{aligned}$		$\stackrel{\ddot{8}}{\stackrel{8}{-1}}$	$\begin{aligned} & \not \underset{\circ}{\text { O}} \\ & \text { ¢ } \end{aligned}$		$\underset{\sim}{\text { Nỡ }}$	$\begin{aligned} & \text { 翤 } \\ & 0 \end{aligned}$	$\stackrel{\infty}{\underset{\sim}{4}}$	-্ণী	$\begin{gathered} \text { n } \\ 0 \\ 0 \end{gathered}$		$\stackrel{10}{\stackrel{10}{-}}$	$\begin{aligned} & \mathscr{8} \\ & \underset{\sim}{6} \end{aligned}$	$\begin{aligned} & \text { Q్毋口 } \\ & 0 \end{aligned}$	芯	$\begin{aligned} & \text { OiP } \\ & \text { + } \end{aligned}$	$\stackrel{\text { ®̈ }}{\underset{\sim}{\prime}}$	$\begin{aligned} & \text { O} \\ & \text { No } \end{aligned}$	㣽	号	哭	¢
$\begin{aligned} & \infty \\ & \stackrel{0}{\infty} \\ & \stackrel{N}{\infty} \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & \text { ๓ } \\ & \stackrel{\rightharpoonup}{\underset{\sim}{\theta}} \end{aligned}$	$\begin{aligned} & \text { 莳 } \\ & \dot{H} \\ & \text { 丽 } \end{aligned}$				7 $\stackrel{\text { ¢ }}{9}$		\circ ＋ ＋ O			$\begin{aligned} & \text { H } \\ & \text { 合 } \\ & \text { - } \end{aligned}$	$\begin{aligned} & \text { ت} \\ & \text { 各 } \\ & \text { - } \end{aligned}$	$\overrightarrow{1}$ $\mathbf{8}$ -1	$\begin{aligned} & \text { F゙ } \\ & \text { © } \\ & \text { 宫 } \end{aligned}$	$\begin{aligned} & \text { Fi } \\ & 0 \\ & 0 \\ & \hline-1 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{\rightharpoonup}{9} \\ & \underset{\sim}{\prime} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{1} \\ & \underset{\sim}{\mid} \end{aligned}$	$\begin{aligned} & \stackrel{9}{1} \\ & \overrightarrow{-1} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \underset{\sim}{H} \\ & \underset{\sim}{H} \\ & \underset{\sim}{\mathbf{H}} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{9} \\ & \stackrel{\rightharpoonup}{9} \end{aligned}$		$\begin{aligned} & \text { H } \\ & \text { N } \\ & \text { تन } \end{aligned}$	H． ¢ ¢

The Series of the G. T. S. Triangulation in India and Burma, arranged in chronological order-concld.

	nomr op Simis.	Scason.	$\pm m$,	numdzi op indipendint figeres.											$\pm \mathrm{M}$	$\begin{aligned} & \text { Onder } \\ & \text { Mor } \\ & \text { Mortl. } \end{aligned}$	Instrament nsed(see table below).	Smputical
No.					$\underset{\text { Sidod. }}{ }{ }^{3}$	$\stackrel{4}{\text { sided. }}$	${ }_{\text {Sided. }}^{5}$	$\underset{\text { slded. }}{\text { c }}$	$\begin{gathered} 7 \\ \text { Stded. } \end{gathered}$	$\stackrel{\text { B }}{\text { Bded. }}$	slded.	$\begin{gathered} 10 \\ \text { sided. } \end{gathered}$	$\begin{gathered} 11 \\ \text { sided. } \end{gathered}$	$\begin{gathered} 12 \\ \text { slded. } \end{gathered}$	${ }_{\text {come }}^{\text {comed }}$ pound.				
96	Naldrag Secondary	1913-14	0.465	$15 \cdot 2$	27	1	\cdots	\ldots	\cdots	1.85	75	27	-						
91	Nügis Hills Secondary	1913-14	0.913	21.3	7	1	1	...	\ldots	...	\cdots	...	\cdots	\cdots	\ldots	0.96	$42 t$	15	...
92	Middle Goddvari Seoondary	1914-15	0.013	17.1	14	1	...	\ldots	\ldots	\cdots	...	\ldots	\cdots	\ldots	\ldots	1.08	476	29	...
93	Kohimã Secondary -	1914-15	1.094	150	13	\cdots	\ldots	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	\ldots	\ldots	$1 \cdot 39$	59	13, 55	...
94	Cāchàr (incomplete) .	1914-15	1.077	$10 \cdot 5$	10	\ldots	\ldots	\cdots	\cdots	...	\cdots			1.65	68	15	...

For 42 Series entering th e Simultaneous Grinding (shown in italics above) $\Sigma \mathbf{M}^{2}=45 \cdot 3591$. Mean Square $\mathbf{M}= \pm \sqrt{\frac{45}{42} \cdot 391}= \pm 1.04$.
For Series up to No. $94 \Sigma \mathbf{M}^{3}=214 \cdot 3199$. Mean Square $\mathbf{M}= \pm \sqrt{\frac{\sqrt{214 \cdot 3199}}{94}}= \pm 1 \cdot 51$.
Reference numbers of instruments used.

For simplification of reference and of the G. T. S. index chart it has been decided to refer to the several series by numbers. These numbers give the chronological order in which the series were commenced. The values of \mathbf{M} for the series occurring in each pamphlet are given after the preface.

In addition to stations of geodetic triangulation, all other geodetic stations other than bench-marks are briefly referred to in the pamphlets. It was thought that this would add to the usefulness of the pamphlets to Trigonometrical parties without materially increasing their bulk. Moreover, any topographical officer coming across a geodetic station of any kind would have some particulars of it and be in a better position to report on its state of repair and advise any necessary action.
(2) Minor triangulation, comprising the ordinary topographical triangulation together witif work of a minor kind such as used to be executed by the old trigonometrical parties in connection with the geodetic triangulation.
(3) Intersected points. These are distinguished according as they have been fixed from geodetic or minor stations. If a point was well marked by a heliotrope and observed with a large theodolite its accuracy of fixing may approximate to that of a geodetic station and exceed that of a topographical station. The co-ordinates of intersected points are accordingly given to such accuracy as appears justifiàble in each case.

Of the above both geodetic and minor triangulations are given in one list and the geodetic stations precede the minor. It is intended, however, when further triangulation of either kind becomes available, to pat this in at the end of the list no matter whether it be geodetic or minor. Only the last page will be reprinted, the original data contained in it being followed by the new data available, for substitution for the last page of this portion of the existing pamphlet. The same applies to the intersected points which occur in a separate list and with independent pagination. In this way it is hoped to keep the pamphlets up to date without constant reprints of whole pamphlets.

The pamphlets are now provided with an index and it is proposed to re. print this and issue with each addendum.

The present procedure is for the data to be compiled in Dehra and sent to the Printing Office. Δ fully corrected proof is then handed to the Drawing Office from which the chart is drawn. The development of what has been indicated above took some months and cannot be said to have come properly into force until July. 'The increase in rate of production is now beginning to be felt and it is hoped that an average rate of four or five pamphlets a week will be attained in the near future.

Adjustment of Burma Triangulation.-A fact which appears only to have been recognised in the last year is that triangulation pamphlets cannot be published until all triangulation, in the area with whioh they deal, has been adjusted. If this has not been done two sets of values of co-ordinates for the same point occur. This drew attention to the case of the Burma triangulation and the smaller cases of Baluchistān and Kashmīr. The Burma triangulation had not been adjusted because the entire network contemplated had not been completed. The labour of adjustment on the plan on which the Iddian network was adjusted also proved a formidable obstacle. However, some preliminary adjustment seemed essential so as to arrive at data everywhere consistent inter. se: and the best method of arriving at this was considered. In this way a much simplified method of adjustment was arrived at. This method lacks some
of the theoretical rigidity of detail which characterised the old plan : but it is doubtful whether the results will differ by an amount which is of any importance even for the most refined geodetic considerations. At least it supplies a working method which is practicable from the point of view of labour in. volved. As further triangulation series are completed it will be possible to reopen the work and give further corrections if this is then considered desirable. To test the method (which is founded on the theory of probability even as the older method was) the Baluchistān triangulation was adjusted. Taking into account the novelty of the method this was effected by a pair of computers in a satisfactorily short time. A good deal of preliminary work for the Burma triangulation has been done, but further progress with this is stopped for a few months owing to the fact that one triangle in Burma has to be re-observed. It is expected that this will be done in December 1915 : and if so, the complete adjustment of the triangulation should be completed by four computers within six or eight months. Until that time publication of Burma pamphlets mill lie held up: but great progress with the Indian pamphlets will have been made, and the Burma pamphlets will then be able to be taken up with energy.

Lcvelling.--Dynamic and orthometric heights have been completed of 9 levelling lines, namely, (1) Rāwalpindi to Murree, (2) Srīnagar to Islāmābād, (3) Akhaưí to Dacca and Pāchuriā, (4) Porālaha to Farīdpur, (5) Comilla to Chittagong, (6) Faridpur to Barisāl, (7) Meerut to Delhi, (8) Thazi to Prome and Rangoon, (9) Elephant Point (Rangoon) to Pyinmana and Thazi. All the published heights in Burma have hitherto been referred to Elephant Point (Pilakat Crcek) sea level; but the levelling has recently been carried to Amherst, and shows that the Elephant Point sea level is higher than that at Amherst by 0.785 foot. It has been decided to refer all heights in Burma to Amberst mean sea level in future, since the Amherst Tidal Observatory is situated on an open coast, while that at Elephant Point is two miles up the Rangoon river. At the same time the results have been expressed in orthometric heights.

The Assam levelling circuit from Pārvatipur via Gauhāti, Karimganj, Akhaurā, Dacca, and Pāehuriā to Porādaha has a closing error of 1.005 feet, which is being distributed among the four last river crossings. Another levelling circuit, namely, Rangoon, Pyinmanā, Thazi, Magwe, Taungdwingyi, Prome and Rangoon, is found to have a closing error of 0.269 foot in a distance of 883 miles.

Press work.-The Tibetan explorations which form Records of the Survey of India, Volume VIII, and extend to 411 pages have been prepared for press. and all proofs read.

All proofs of Professional Paper No. 15 of 190 pages have been read in the Computing Office.

Research.-In 1912 an attempt was made to solve the question of the effect on the triangulation of India of changing the spheroid of reference. The Everest spheroid differs from the spheroid derivable from most recent work, the semi major and minor axes being too small by about 900 and 700 metres respectively. What was wanted was a ready means of changing to any desired spheroid: or even of treating the axes of the spheroid and the co-ordinates of the origin as unknown and determining them so as leest to fit the geodetic results accumulated by observations. This problem has now been solved satisfactorily, and the results are given in the first four chapters of Professional Paper No. 16 entitled "The Earth's Axes and Triangulation." The Paper has
been printed to this extent. A number of related matters remain to be dealt with in the later chapters. This paves the way for the general consideration of the Indian deflections, a problem the solution of which will be much assisted by the use of an instrument which has been recently designed. This instrument performs the integrations

$$
\int \frac{\sin \phi d r}{\sqrt{\mathbf{r}^{2}+\mathrm{h}^{2}}} \text { and } \int \frac{\cos \phi \mathrm{dr}}{\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}}
$$

(r, ϕ, being polar co-ordinates of any point referred to station and h the height) by simply running the pointer round the contours of a map. If ϕ is measured from the prime vertical these two integrals multiplied by a suitable constant, are the deflections in seconds of are, in prime vertical and meridian respectively. They are recorded at one operation on two druins similar to the recording arrangements on a planimeter.

We have now reached a stage when the interpretation of the geodetic results of observations in India on the direction of the plumb-line has become a matter of scientific urgency. The labour of calculating the effect of the attraction of topographical features on the plumb-line is of prodigious amount. To test a theory such as that of Hayford's isostasy, numerous heavy calculations have been necessary. Morcover, these calculations have had to be made with serious limitations to make them practically possible. As an example it has been necessary to treat land and water masses together, though much advantage would accrue if these could be treated separately. The instrument solves this problem when its pointer is caused to travel round the map-contours in the same way that a planimeter is used for evaluating an area. By its means the earth may be divided in any way desired and the effects of each portion separately found without any additional labour. This makes it possible to wake different assumptions regarding the state of compensation of different districts. It seems a natural inference that compensation will occur to varyiug extents and depths in districts whose mode of formation was essentially different geologically. A mountain formed by vertical uplift is not likely to be compensated in the same may or to the same degree as one which is the result of the crumpling of the crust. Mountains of much earlier origin may date from the time of solidification of the crust and so differ from both of these. In fact it is advantageous to study the earth district by district. The instrument will allow this to be done and tables to be produced which will give the effect of any such district at any point. When this has been done, the combined effect of all districts may be considered and the unknown quantities which are connected with each may be determined by the help of equations formed from the observation data. The problem will still remain laborious enough, but it will be possible to consider it in a form which was previously quite impracticable on account of the vast amount of computation labour involved.

Accommodation and Equipment.-About a year ago a large room was given up to the Computing Office which had been vacated by the Drawing Office. This has for the first time for years given space sufficient for the Computing Office and its large bulk of records and stock. During the past year the racks have been improved and added to and a start will shortly be made with a card index for the whole of these. Owing to the cramped state previously existing no sort of order was possible and the discovery of a particular book of records depended largely on the memory of the computers. With good progress it will be possible to report the conclusion of this work in the Records of next year.

A gold blocking press has recently been acquired. This will enable Pr_{r}. fessional Papers and Volumes to be published from Debra in much improved form.

Type-Printing Office.

During the year the volume of Tibetan explorations (Volume VIII of the Records) in two parts (411 pages) and Professional Paper No. 15 (190 pages) have been finished. Professional Paper No. 16 has been printed up to page 68. At present 10 compositors are steadily engaged on triangulation pamphlets. A reprint of the graticule tables for maps has been begun. Tables of logarithmic sines, cosines, tangents and cotangents for every minute, to 5 places of decimals, have been printed and stereotyped. These will be of use in traverse computations. It is intended to revise and stereotype all tables of the Auxiliary Tables.

Workshops.

The increase in work in the Workshops has made some changes and additions immediately compulsory. A lean-to shed 36×18 feet has been added on the south wall to afford protection to the carpenters and to timber during the rains. This has proved most valuable. It was also noticed that the arches and pillars which very much obstructed the existing building could be removed. These arches supported the roof of the original buildings : but a roof which was subsequently built did not rest on them. They have accordingly been removed. It is proposel to use the building as a godown when the workshops vacate it, and the clearance of these arches will much improve its capacity for this purpose. A 6 H . P. electric motor has been acquired and installed. Electric current has only become available during this year, so that previously no power was available. A circular saw and emery wheel have been obtained and these, as well as three lathes and a routing machine (specially for stereo-plates but also of general use), are now all driven by the motor. Although this new arrangement has only very recently been completed the great advantages of it are daily apparent. A good deal of construction and general equipment work for the offices has been carried out.

The construction of the integrator referred to under "Research" has been hegun and it is hoped that it will be completed during the present year.

A new optical device has been made and experimented with. This aims at replacing heliotropes for certain purposes. Experiments up to date have resulted in this arrangement being visible up to $4 \frac{1}{2}$ miles, and it is hoped that this distance will be considerably increased.

A Traverse signal (vide photograph and drawing) of which several have been made in the workshops may be described herc. It was primarily designed for the Bombay City Survey, 1911, in which it was used successfully. It is the device referred to on page 47 of Records of the Survey India, Volume V. The marks defining the traverse stations were about one foot below ground level, and consequeutly it was difficult to centre an instrument or signal accurately over them. The signal is supported by a three-legged stand about 20 inches high, the top of which is a ring (shown in plan in the sketch at \mathbf{A} A) whose inner diameter is $9^{\prime \prime}$. An iron tube shown in section at

Trayerse Signal designed by Mr. J. de Graaff Hunter, M.A., for the Bombay City Survey.

T T, whose lower end rests on the mark, passes through the ring. The lower end of the tube is fitted with a socket, the whole being turned up true in a lathe; and the socket fits into the mark, which is made cup-shaped, and automatically centres itself. It is accordingly necessary to arrange a means of holding the tube and having adjustments for making it vertical. A brass sleeve, S S in section, with a clamping device slides on the rod. This sleeve is supported on two centres C C at the ends of one diameter of a brass ring R R. The diameter of the ring at right angles to this is continued outwards by two iron rods I I turned up true, which slide in two brass bearings B B, and the rods can be clamped in any desired position. The bearings themselves are fixed on a plate D D which is pivoted at one end with a clamp at the other end. When unclamped this is free to turn about a vertical axis P , giving a motion at right angles to that obtained by sliding the rods in their bearings. A combination of the two motions is sufficient to permit the tube to be brought into a vertical position. This is readily effected with the belp of the indications of a spirit level attached to the tube. The tube is free to rotate on its own axis, so that the level soon shows when verticality has been obtained. This accomplished, the clamp screws are made fast. It is not necessary for the ground on which the tripod stands to be approximately level. A small table is fitted to the top of the vertical tube and a vertical board is attached to this in such a position that the axis of the tube just grazes its front face. In this board an opening is cut about 4 inches square, across which and in line with the tube-axis a strip of brass $\frac{3}{5}$ iuch wide is mounted in such a manner that it can rotate on a vertical axis. It is painted black and forms a good object for intersection against a white background of card-board. Its apparent width can be varicd by rotating it until it forms a suitably fine line for the particular distance from which it is being observed. For night observation a lamp is placed behind the vertical board and the opening in the board is more or less obscured by a pair of wood strips connected by tro brass pieces in the manner of the ordinary parallel rulers, the centre of each brass piece being piroted on screws fixed in the vertical board. By this means the width of this slit can be varied from nothing to about 3 inches, and its centre is always in the continuation of the axis of the vertical rod. The table also carries the level by means of which the tube is made truly vertical and the brass strip or wooden slit accordingly brought directly over the station mark.

This suffices for the angular measures. For chain measurements a-Oshaped piece is fitted on the rod with freedom to slide up and down unless clamped, but only in such a plane that it is at right angles to the line of sight, which is aligned on the observing telescopes. This is brought to ground level and measurements are made to the extensions on each side.

A similar centreing device is used to transfer the marks to above ground level to permit of the theodolite being centred over the mark.

It has latterly been found that the apparatus may be modified without difficulty to suit the case of any station mark below, at, or above ground level. The only modification required is in the length of the tube and tripod. For some purposes the superst:ucture may be replaced by a smaller arrangement carrying only the level, the tube itself being used as the object for intersection. The length may be added to by extra pieces screwed on to it.

Omori Seismograph.

The Omori seismograph has been working throughout the year and the following table gives a statement of the earthquakes recorded.

List of earthquakes recorded from the lst October 1914 to 30th September 1915.

No.	Datr,	$\overbrace{\text { lidien Standerd Time. }}^{\text {Tive op beangine }}$		$\begin{aligned} & \text { Digtance } \\ & \text { of Epointre in } \\ & \text { yinge. } \end{aligned}$		Dugation.	Intoneity.	Remarie and Identification with any deflaltely ascertained carthquake
		Dehra.	Simia.	Dohre.	Simia.			
		H. M.	H. M.	Miles.	Miles.	H. M.		
1	3rd October 1914	2314	...	10,000	...	126	Very slight.	
2	4th "	345	344	2,700	2,500	$1 \begin{array}{ll}1 & 19\end{array}$	Great intensity.	
3	9th , "	$8 \quad 12$	$8 \quad 10$	280	100	130	Modernte intensity.	
4	12th ",	21 53!	2152	1,820	2,000	$0 \quad 25$	Slight intensity.	
5	24th ",	1158	1158	3,500	3,500	115	Moder'ate intensity.	
6	5th November 1914	16 391	$16 \quad 39$	840	500	026	Slight intensity.	
7	$\begin{aligned} & \text { 25th November } \\ & 1914 . \end{aligned}$	17 331	$17 \quad 33$	3,500	4,000	120	Considerable iuten. sity.	
8	$\begin{aligned} & \text { 16th } \\ & 1914 . \end{aligned}$	15 53.	$15 \quad 50$	630	500	$0 \quad 12$	Slight intensity.	
9	Gte Jbmuary 1915.	$10 \quad 26$	$10 \quad 24$	350	300	$0 \quad 12$	" "	
10	"	5 49	53	2,800	2,000	040	Moderate intensity.	
11	14tl , ,	1233	1231	5,000	$\begin{aligned} & 4,000 \\ & \stackrel{\&}{8} \\ & 5,000 \end{aligned}$	16	" "	Italian earth Tuake of 13 th very severe.
12	9th February ,	$16 \quad 34$	1032	850	1,000	$0 \quad 10$	Slight iutensity.	
13	22nd "	$20 \quad 28$	$20 \quad 27$	840	800	020	" "	
14	1st Marcl ,	037	$0 \quad 36$	2,800	3,500	$0 \quad 38$	Moderate inteusity.	
15	3 r] , "	7 16	$7 \quad 13$	490	250	08	Slight intensity.	
10	28th April "	9 56란	$8 \quad 67$	720	400	025	" "	
17	30th "	7 81	...	1,750	...	$0 \quad 30$	" ${ }^{\prime}$	
18	2nd May \quad,	$10 \quad 43$	$10 \quad 40$	3,500	4,000	30	Great .,	
19	6tlu , "	8 4912	841	980	1,000	$0 \quad 18$	Slight "	
20	13th " "	$\begin{array}{ll}16 & 238\end{array}$	$16 \quad 25$	4,900	5,000	117	Moderate "	
21	7th Jane \quad,	3 19t	319	...	12,000	139	"	
22	31at July "	712	$7 \quad 12$	4,410	4,000	130	Considerable inten. sity.	
23	13tb August ",	$14 \quad 53$	$14 \quad 53$	2,800	2,000	025	Slight intensity.	
21	$\begin{aligned} & \text { 7tb } \\ & \text { 1915. September } \end{aligned}$	711			\cdots	221	Great "	
25	2+th Septer.ber 1915.	$13 \quad 52 \frac{1}{2}$	$13 \quad 53$	3,220	3,000	$0 \quad 26$	Slight "	

PART III.-SPECIAL REPORTS

Address delivered by Colonel Sir Sidney Borrard, President, at the Indian Science Congress at Lucknow on January 13th, 1916.

THE PLAINS OF NORTHERN INDIA, AND THEIR RELATIONSHIP TO THE HIMĀLAYA MOUNTAINS.*

When I learnt that the Committee of the Indian Science Congress had honoured me by electing me the President for the year and by asking me to give an address to this meeting, I decided to invite the attention of the Congress to the unsolved problems surrounding the formation of mountains. The scientific world is now divided into numerous branches of specialists following their own roads, but the study of mountains belongs to no specialist branch; it is not a road, but a junction of many roads, and geologists and astronomers, physicists and mathematicians, geographers and geodesists, all meet at that junction for discussion. I have approached the question from the roads of geography and geodesy, and I will tell you the lessons I have learnt; I do not, however, ask you to believe that the problems are solved, for although I may be led to place certain geographical and geodetic conclusions before you, I realise that no solution will be satisfactory, unless it proves acceptable to geologists, physicists and mathematicians.

You may think it peculiar that I should be speaking about mountains at a place where only flat plains are to be seen, but I may remind you that to the north of these plains stand the greatest mountains of the Earth, and one of the most interesting of the problems under consideration is, what is the relationship of these plains to those mountains?

This is an outline map of the Onited Provinces; you will see that these Provinces have three geographical divisions ; there is the Himalayan area to the north, there are the level plains in the centre, and there is the ancient tableland on the south.

These great plains in the centre have been formed of loose sediment brought down by the Ganges, Gogra and other rivers: a borehole was sunk at Lucknow 1,500 feet deep, but no rock bottom was reached.

This is a section across the United Provinces. If you compare the rocky area lying to the south of the plains with that lying to the north, you will find on the soath a massive table-land; the geologists have shown that this table-land belongs to a very remote past. The mountains on the north are totally different; here the rocks have undergone continued compression, elevation, and disturbance throughout the tertiary period, and our earthquakes prove that these movements of the Earth's crust in the north of the United Provinces have not yet ceased.

I ask you to consider how does this ancient table-land join ou to these younger mountains that are always suffering from movements in the crust?

[^4]If we could dig out from the Gaugetic trough all the silt depositel by the Himālayan rivers, what kind of rocky junction should we find under Lucknow?

THE CONTRAOTION THEORY.

A hundred years ago the accepted idea was that mountain ranges were due to the upward pressure of liquid lava and that their elevation had been caused by volcanic forces. But when geologists began to study the structure of rocks, they found that mountains had suffered from great horizontal compression, which was evident from the folding of strata. This discovery led to the idea that mountains had been elerated not by vertical forces, but by horizontal forces which squeezed the rock upward. The wrinkling of the Earth's crust into mountains by horizontal forces was explained by the cooling of the Earth : this is the well-known Contraction theory illustrated in this diagram ; the Earth's interior is held to cool and to contract, and the outer crust is supposed to get too large for the shrinking core and to wrinkle.

About 1860 the observations of the plumb-line in these Provinces brought to light a most important and totally unexpected fact, namely, that the Himālaya were not exercising an attraction at all commensurate with their bulk.

This instrument is a plumb-line. It is a simple weight suspended on a string, and it hangs under the influence of the attraction of the Earth which pulls it downwards : you know from mechanies, that if one force pulls this weight vertically and if another force pulls it horizontally, the weight will Lang in a resultant direction inclined to the rertical. Sixty years ago the question had to be considered, how will a weight hang near the foot of the Himālaya? here there will be two forces ; the Earth's mass will be pulling the weight rertically, and the mass of the Himālaya will pull it horizontally. You may think that the mass of the Himālaya is very small compared with that of the Earth ; that is true, but we can measure by the stars very small angles of latitude and longitude, and the question was, will the Himālaya deflect the plumb-line sufficiently to affect the observations of the Survey?

The plumb-line was observed at Kaliana, a village near Muzaffarnagar in the United Provinces, 60 miles from the foot of the mountains: the observers found that the Himālaya were exercising no appreciable attraction. Archdeacon Pratt, the mathematician, then calculated from the known dimensions of the Himālayan mass the attraction that the Himālaya should exercise. Geographical exploration has taught us more about the dimensions of the Himālaya and Tibet than Pratt knew, and Major Crosthwait has now revised his actual figures. By the theory of gravitation the plumb-line ought to be deflected at Kaliana 58 seconds towards the hills; it is not deflected at all. It hangs vertically. This discovery was the first contribution made by geodesy to the study of mountains. The discovery was this, that the Himalaya behaved as if they have no mass, as if they were an empty eggshell ; they seemed to be made of rock, and yet they exercised no more attraction than air. From the Kaliana observations Pratt deduced his famous theory of mountain compensation: he explained the Kaliana mystery by assuming that the rocks underlying the mountains must be lighter and less dense than those underlying plains and oceans. The visible mountain masses, he said, are compensntcd by deficiencies of rock underneath them. This is the theory of Mountain

Compensation. The compensation of the Himalaya is not believed now to be exactly complete and perfect: they seem to be compensated to the extent of about 80 per cent.; their total resultant mass is thus about $\frac{1}{5}$ th only of their visible mass standing above sea-level. The discovery of mountain compensation struck a blow at all theories which attributed the elevation of mountains to any additional masses that had been pushed in from the sides. The elevation of mountains by subterranean lava squeezed in from the side had to be rejected because it gave to mountains additional mass; the wrinkling of the Earth's surface by lateral horizontal forces had to be rejected because it gave to mountains additional mass pushed in from the sides. As the Himālaya possess only $\frac{1}{5}$ th of their apparent visible mass, I am led to suggest that the principal cause of their elevation has been the vertical expansion of the rocks underlying them, vertical expansiou due to physical or chemical change. The name of Pratt and the name of Kaliana have now permanent places in the history of science, and in this city of the United Provinces it is only right that I should recall to you that the great theory of mountain compensation, since found true in every continent, had its origin in the United Provinces, and that its author lies buried in these Provinces at Ghāzipur.

You will understand from this diagram that if the Earth's interior shrinks and if the outer crust is squeezed up into wrinkles like this, the mountains must possess much alditional mass: the theory of compensation forbids such additional mass.

The contraction theory was gradually becoming discredited under the attacks of Fisher, Dutton and others, and it seemed some years ago to be moribund, when it was giren a fresh lease of life by the publication and translation into several languages of Professor Suess's great work, The Face of the Earth. This work is a critical history of all past geographical, geological and geodetic research; the wealth of its detail, the courtesy of its criticisms have won for Suess's work universal admiration.

But from the geodetic point of view it is disappointing; it accepts the contraction theory in its entirety, and it rejects the theory of Mountain Compensation. Suess does not obscure the issue, as some writers do, by the indefinite adoption of contradictory theories; being quite clear in his own mind he is quite clear to his readers. He states that he does not believe in the compensation of mountains by underlying deficiencies of mass. Now the compensation theory has been found to be true in India, Europe and America: nowhere do mountains attract the plumb-line as the law of gravitation would lead us to expect. So you see that the geodesists are slarply opposed to the school of Suess. Now what is Suess's reason for rejecting the theory of mountain compensation? It is this: he states quite clearly, "mountain compensation is inconsistent with all geological observations." Whilst I admit that mountain compensation is inconsistent with certain genlogical theories, I do not helieve that it is inconsistent with geological observations.

If the Himanlaya had the uncompeusated mass which they appear to have, aud which the school of geologists who follow Suess ascribes to them, they would attract the waters of the Indian Ocean over India; the plains of Northeru India would be a great sea; this sea would be 300 fret deep above Allahälā̃, 400 feet deep above Lacknow ond Gorakhpur, and 800 feet deep above Pilibhit and Bahraich. Fortunately those mountains have not the power of attracting the Indian Ocean.

MOUNTAIN FLOTATION AND ISOSTASY.

But if the theory of compensation has suffered at the hands of its opponents, it has suffered also from its friends. Pratt's theory of compensation has been stretched into a theory of flotation: an iceberg floats, because ice is lighter than water; an iceberg is compensated in the water by its relative deficiency of density ; Sir George Airy, the Astronomer Royal, suggested that mountains were compensated because they were floating upon a heavy sub. terranean magma. Pratt never went as far as this ; he merely said, "the mountains are compensated"; Airy went further; he said, "the mountains are floating." Distinguished geologists, Fisher, Dutton, Oldham, have de. veloped the idea of flotation.

The theory of flotation lays down that the mountains are supported in their present positions by hydrostatic pressure, just as an iceberg floats upon water. I have no time to discuss this theory at length, but I should like to point out to you that if an iceberg floats upon water, its weight must be compensated by underlying deficiencies of density : the theory of flotation does net state this with regard to mountains; it states the converse, viz., that as mountains are compensated they must be floating. The principle of hydrostatic pressure demands that if any mass is floating it must be compensated; it does not, however, follow that if a mass is compensated it must be floating. The theory of flotation is based upon the assumption that the compensation of mountains is complete and perfect; but we have not found complete compensation in India; the outer Himallaya are compensated to the extent of 80 per cent. As iceberg would not float, unless its compensation were exactly complete; the fact that mountain compensation is nowhere quite complete or perfect is a serious argument against flotation. This imperfection of compensation differentiates rock from water: it denotes rigidity. What I have been calling the theory of flotation is frequently called the theory of Isostasy. I have however purposely avoided using the word Isostasy, as its exact meaning is open to question. Isostasy is a condition of approximate equilibrium, not perfect equilibrium like the condition of flotation. Isostasy is a condition of compensation in a solid crust; it does not necessarily imply hydrostatic support, as flotation does. I therefore hesitate to apply the word Isostasy to the flotation theory ; for Isostasy can exist without flotation.*

MOUNTAINS ORIGINATE AT GREAT DEPTHS.

A very important work has been that of Mr. Hayford who has recently discussed the results of the plumb-line at a large number of stations in America. He has confirmed Pratt. Hayford has investigated the depth to which the deficiency of density underlying mountains goes domn, and he has found that that depth is between 60 and 90 miles. That is to say, he has shown that the depth of subterranean compensation is very great compared with the height of mountains. The discovery that mountains originate from the great depth of 60 to 90 miles is the second important contribution of geodesy to this study ; the first was compensation, the second is great depth.

[^5]Most books are written on the assumption that mountains are surface wrinkles and that their structure can be determined by examining surface rocks.

The Sātpurā range runs east and west south of the Narbadā; the plateaux of Hazāribāgh and Chotā Nāgpore are the eastward continuation of the Sātpurà range. A high authority has stated that the Hazāribāgh and Chotā Nāgpore plateaux can have no real connection with the Sātpurã range, because they are formed of different rocks. But if we regard this range as rising from a depth of 75 miles, its elevation will be seen to be due to a deepsented cause that has nothing to do with the surface rocks. One deep-seated cause has lifted up this range from the Narbadā to Hazāribāgh irrespective of the kind of rocks lying on the surface.

THE GANGETIC TROUGH.

I have now discussed the two principal thoories of Himālayan elevation, the Contraction theory and the Flotation theory. Let us consider for one moment how this deep Gangetic trough is explained by these two theories. For a great number of years the Contraction theory ignored this trough; it was, I think, Professor Suess who first recoguised that the trough had to be fitted into the Contraction theory. His explanation of it was this: as the Earth's interior contracts, the surface of Asia is wrinkled, the wrinkles get pushed southwards against the Indian table-land, and the rock surface of Northern India gets compressed into a downward bend between the mountains and the table-land. This explanation is not satisfactory: if the surface of Asia is being pushed southwards in wrinkles against the table-land, it is difficult to understand how it is that a deep trough borders the table-land. Why should the solid crust be bent dowawards by a horizontal pressure from the north? If the crust is being pushed against this table-land, it should be heaped up all round it.

The explanation of the Gangetic trough that is supplied by the Flotation theory is this: the Earth's crust is likened to a floating raft: the more weight you place upon a raft, the deeper it sinks into water. The Ganges and Jumna and other rivers are continually depositing fresh sediment upon these plains, and the crust according to this theory continually sinks downwards by the weight of the sediment. When we sec the massive rocks of Kaimur and Mirzapur supported easily by the crust, it is difficult to believe that it cannot support a thin layer of silt without yielding.

You will see from this chart, that the Ganges and Inclus hare filled up their trough with silt, but that the Tigris and Euphrates are behindhand; the Porsian Gulf is an unfilled trough which will be filled in time.

Here is a chart of Japan, showing the Tuscarora deep, a long submarine trough; it is over 21,000 feet deep, and it is continued to the north-east by further troughs lying in front of the Kuriles and Aleutian Islands, and attaining depths of 28,000 feat. How then can it be argued that the Ganges trough has been created by the weight of its own silt, when we see that the Euphrates trough and the Japanese trough are unfilled? These troughs exist before the silt comes to them. The idea that the weight of siit causes subsidence arose, I think, from the fact that the places where silt is being deposited are frequently fcund to be subsiding. But the truth may be
this: a river carries its silt to the lowest hole in the crust it can find ; the lowest holes near continents are those where the crust is subsiding; rivers thus deposit their loads in places of crustal subsidence, but their loads do not cause the subsidence.

SOUTHERLY DEFLECTIONS PREVAIL OVER THE GANGES PLAINS.

Now let me tell you of the third discovery due to this plumb-line. The Surrey found that at 60 miles from the hills this plumb-line hung vertically and Pratt deduced the Theory of Mountain Compensation. But when the Survey began to extend their operations, a new phenomenon came to light which caused great surprise. All over the United Provinces at distances exceeding 70 miles from the hills, this plumb-line was found to hang decisively away from the mountains; at Fyzābād, Cawnpore, Benares the plumbline is deflected southwards: here at Lucknow it is deflected $9^{\prime \prime}$ to the south. If the Himālaya were simply compensated, this plumb-line should be langing at Lucknow exactly vertical; if the mountains were not compensated, it should be deflected here about $50^{\prime \prime}$ towards the north. But it is deflected $9^{\prime \prime}$ towards the south. The observers were astonished to find that at places in sight of Himalayan peaks the plumb-line turned away from the mountain mass; that at Amritsar in sight of the Dhaola Dhār snows it was deflected towards the low Punjab plains; that at Multān in sight of the Takht-i-Sulaimān mountains it was deflected towards the desert; at Bombay it was deflected seawards away from the Western Ghāts; on the east coast of India it was deflected seawards away from the Eastern Ghāts.

The new lesson to be learnt from the plumb-line is this; a hidden subterranean channel of deficient density must be skirting the mountains of India. Here in North India is a wide zone of deficient density, of crustal attenuation; it is the presence of this zone of deficiency that accounts for the southerly deflection of the plumb-line. What is the meaning of this zone? How has it come into existence?

If you look at this section (plate 2) the Earth's crust in these outer Himãlaya has been compressed laterally : of this there is no doubt. The area between the snowy range and the foothills is a zone of crustal compression. Aud I suggest for your consideration that the Gangetic trough, this rone of deficiency, is a zone of tension in the crust. The crust has been stretched here and attenuated. Here you hare compression, and alongside is the tension. The tension is the complement of the compression. I have pointed out that the Himálaya mountains are largely, but not completely, compensated by their underlying deficieucies of density: their compensation iş howerer rendered complete by the presence of the Ganges trough; if the Himalayan compression and the Gangetic tension are considered togcther, it will. be found that there is no extra mass.

Geodesy thus teaches that the Gangetic trough and the Himälaya Mountains are parts of one whole. The Contraction theory and the Flotation theory both treat the Gangetic trough as though it were a secondary effect of Himalayan elevation. But this Gangetic trough may have been the first and the decisive event ; the Himãlaya Mountains may have been a secondary effect, a sequel to the opening of the trough.

HYPOTHESIS OF A RIFT.

I showed you on the evidence of the plumb-line that the Gangetic trough was a zone of crustal attenuation, a zone in which the Earth's crust was deficient in density. I then took one step forward and suggested that it was a zone of tension. I will now take another step forward and suggest to you that there has occurred an actual opening in the sub-crust, and that the outer crust has fallen in owing to the failure of its foundations. I suggest that the Ganges plains cover a great rift in the Earth's crust.

The Earth is a cooling globe; an increase of temperature occurs as we descend into mines; and this temperature gradient is a proof that the Earth is losing heat by conduction outwards. The discovery of radium has not affected the argument.

The smaller bodies of the solar system, the Moon and other satellites seem to be cold ; the Earth has a cold exterior and a hot interior ; the larger planets are believed still to display heated surfaces, whilst the Sun is still a globe of fire. The inferences are warranted that ali the bodies of the solar system were hot at one time, and that the smaller have lost their heat. So I say that the Earth is a cooling body. The rock composing the crust and sub-crust is however a bad conductor, and the interior of the Earth will not shrink away from its crust, as has been assumed in the Contraction theory. The inner core of the Earth is in fact not losing heat appreciably. The outer shell was the first to lose its heat, then the shell below it, and the sub-crust is now losing its heat more quickly than the interior core. As the outer shells contract from cooling, they become too small for the core, and they crack. Supposing we had here a great globe of rock, red-hot throughout; how would it cool? Can you imagine it cooling in such a way that the core became too small for the outer shell, and the outer shell became wrinkled? No; the outer shell would cool first, and would crack.

The outer shell of the Earth was the first to crack millions of years ago: now a lower shell, the sub-crustal shell, is cracking. When a crack occurs in the sub-crust, parts of the upper crust fall in.

You will see that this Indus-Ganges trough has the appearance of a crack. And there are reasons for beliering that these Himālaya have been split off from this ancient table-land and have been moved uorthwards and crumpled up into mountains. This Assam platean is stated by geologists to resemble in its structure and rocks the Indian table-land; Assam has been split off and moved away.

Here are the Bengal coal-fields, and just opposite on the other side of the trough are the Sikkim coal-fields; and the coal in the two places is similar. The rocks of the outer Himālaya have been very much crushed, but they still bear a resemblance to the rocks of the Vindhyan table-land.

Here are the Aràralli mountains which end now at the Delhi ridge; Mr. Middlemiss has found sigus of a transrerse strike in the Himālaya on a continuation of the Araralli alignment.

Similarity also exists between the rocks in Cutch and those on the other side of the Indus in the hills of Sind.

from the bay of bengal to the mediterranean

Geologists have discovered that the ancient table-land of the Vindhyas and Deccan is a remnant of a much greater table-land that in very early
ages included Africa and Arabia. Africa nnd Arabia and the Deccan table-land are in fact fragments of one extensive and ancient continent. Hitherto I have been considering the peculiar trough that skirts the northern edge of the Indian table-land. Let us now consider whether this trough is continued to the east or to the west.

On the east we finil one of the great linear deeps off the coast of Java and Sumatra. It is 24,000 feet deap. In 1883 the Krakatoa eruption took place in the Sunda Straits. Great depths have also been discovered off the Nicobar Islands and earthquakes have occurred on the Chittagong coast. In continuation of the Gangetic trough we thus find in the Bay of Bengal a line of seismic activity, and of submarine deeps.

To the west of Karāchi we see the Persian Gulf, and the plains of the Tigris-Euphrates. The plains of the Tigris-Euphrates are very similar to those of the Ganges: they consist of mud, sand and sediment lying in a long trough between the ancient table-land of Arabia and the mountains of Persia.

Further west we find the Euphrates trough is continued by the Mediterranean Sea, and the Mediterranean is bounded on the north by the Taurus mountains, by the Balkans, Carpathians, Appenines and Alps.

Throughout the whole distance from Calcutta to Sicily we see that the old table-land India-Arabia-Africa is bounded on the north by a long trough, and that this trough is in its turn bounded by the younger mountain ranges from the Himallaya to the Alps. Geologists have discovered that all these mountain ranges were elevated in the same era; they are all of the same age.

I submit for your consideration that the Ganges-Indus-Euphrates-Mediterranean trough is an indication at the Earth's surface of a rift in the sub-crust.

When we get as far west as Sicily, we reach a region of active volcanoes, Etna and Stromboli. Italian geologists believe that Sicily has been separated from A frica by recent subsidences.

THE EARTHQUAKE RECORD.

The whole zone from Java to Sicily has been visited by earthquakes throughout the listoric period. And the recent earthquakes in Shillong, Dharmsàla and Messina show that seismic activity is continuing in our time. This is in fact one of the zones of the Earth, along which earthquakes occur most frequently.

In the last 300 years 64 destructive earthquakes are known to have occiured in India:* there may have been others of which there is now no record. Of the 64 riolent Indian earthquakes 58 have occurred along the Indus-Ganges zone. These may be grouped as follows :-
Assam-Bengal 20

Outer-Himālaya 11
Northern Punjab and Kashmir 17
Southern margin of Gangetic plain 4
Cutch and Sind 6
Total . 5 S

[^6]If we consider the whole zone from Bengal to Sicily, we find from Milne's catalogue that the numbers of destructive earthquakes since 1615 can be grouped as follows :-

In the last 300 years a destructive earthquake has occurred in Northern India on an average once in every 5 or 6 years.

FROM LOB NOR TO THE BLACK SEA.

Let us now glance to the north of the long mountain zone that extends from China to France. You will see north of Tibet there is the large inland basin of Lob Nor; then here are the low-lying plains of the Oxus; then come the Caspian and Black Seas. Now all four of these depressions are believed to be subsidences of the Earth's crust. South of the line of mountains we see a long continuous trough : north of the line of mountains we find not a continuous trough, but a series of separate depressions. Now these depressions are separated from one another by fragments of mountain ranges which once ran parallel to the Himālayan-Alpine trends. Here you see the Pāmirı. 'The high Pāmir plateau consists of parallel ranges rumuing east and west. The eastern and western continuations of the Pàmir ranges seem to have foundercd into the abyss, those on the east have fallen into Lob Nor, those on the west into the Oxus depression.

Here again you will see that one of the chains of the Caucasus has foundered into the Caspian, and the western extensions of the Caucasus have fallen into the Black Sea.

Why are those mountain ranges collapstng? May it not be that the Earth's crust is cracking and these mountains are falling into the rifts?

THE BOMBAY COAST.

I must now invite your attention to the Bombay Coast. From the Tāpti to Cape Comorin runs the range of mountains known as the Western Ghāts. This range is parallel to the coast of Iudia and about 40 miles inland; it rises suddenly with a steep scarp. The strata are almost as horizontal as when first laid down; they have never been compressed or folded.

The Survey has observed the plumb-line at different points along this coast; it is always deflested strongly towards the sea. To the west of Bombay and Mangalore there is the deep sea; and to the east there is a massive range over 4,000 feet high ; yot the plumb-line will hang seawards. If the Western Ghats possessed the mass which they appear to possess and which the Suess school ascribes to them, then the Bombay plumb-line should be deflected 15 seconds towards them. If on the other hand the Western Ghāts are compensatod by deficiencies of mass underlying them in accordance with the compensation theories of Pratt and Hayford, then the plumb-line should lang verticaly at Bombay. But the plumb-line takes neither of these courses; it hangs towards the sea. We have been puzzled for years by the plumb-line at Bombay;
we used to think that the rock under the ocean must be so dense and heavy, that it was able to pull the plumb-lines towards the sea. Major Cowie, however, observed in the south of Kāthiāwär, and found that the plumb-line here had a strong landward deflection. The seaward deflections occur throughout the Bombay const but not round Kāthiàwār. It is only quite recently that we bave realised we have here at Bombay the same phenomenon as at Lucknow.

In Northern India the plumb-line will persist in hanging away from the visible mountains and at Bombay it takes the same course, and when I consider its constant seaward deflection, I can only suggest to you that there must be, between Bombay and the Western Gbāts, a zone of subterranean deficiency, a zone of fracture and subsidence like that of the Gangetic plains.

The secret is hidden below the Earth's crust : you will see that the Ghats have been forced (possibly by underground fracture), into a decided curre just above Bombay harbour ; it is significant that at this curve the Deccan Trap rises to its highest point, Kalsūbai.

I suggest to you that a crack in the sub-crust has extended from Cape Comorin to Cambay, and that as this crack has occurred the Western Ghäts have been elerated. The crack has been filled by masses of fallen rock and by allurial deposits brought down by rivers.

Geologists have shown that this range consists, from latitude 20° to $16^{\text { }}$, of the laras of the Deccan, comparatively recent rocks, whilst from latitude 16° to s the range consists of ancient metamorphic rocks. The rocks of the northern part of the range are of different age and structure and origin from the southern.

Nevertheless geodesists contend that this is one and the same range: the rocks composing it have had nothing to do with its eleration. The Western Ghāts hare been elerated, after the Deccan laras had become solidified into surface rocks. Their elevation has taken place in the Tertiary age.

Now I mill turn to the Eastern Ghāts; at Madras and at Vizagapatam we find the plumb-line hanging towards the sea. Here we hare the same phenomenon, as we witnessed at Lucknow and at Bombay, the plumb-line turns away from the mountains. I will not repent myself, but I suggest again that this coastal zone like the western covers a sub-crustal crack.

I told you just now that in the last 300 years there liad been 64 destructive earthquakes in India: of these 58 had occurred along the Indus-Ganges trouyh. Where did the remaining six take place? Three of them occurred on the Bombay-Surat const ; the other three on the Madras ecast. No destructive earthquakes are recorded as haring occurred at Hyderäbäd, or at Bangalore or at Nagpore.

The ancient table-land of India is in the shape of a triangle, but its two wings, Assam and Cutch, have been severed from the main body ! this may haw been due to the coast-line cracks.

Aswam-Bengal has had 20 destructive earthquakes in the last 300 years, and though only 6 have been recorded in Cutch and Sind, yet this westeru fragment of the table-land is a seismic region. In 1819 Bhüj was destroyed and every town in Cutch was injured; numerous fissures were seen throughout the land. North of Sindhi a drop 16 feet deep and $\overline{\mathrm{j}} 0$ miles long, shown here on plate 4 , suddenly appeared on the plains which had hitherto been as lerel as the sea. On account of ity sudden appearance across the old bed of
the Indus it was named by the inhabitants the Allah Bund, and by this name it is now known in geography. It was due to the subsidence of a large area to the south.

Many of the destructive earthquakes of Sind have not been recorded in history, but the ruins of strong buildings with human bones buried below them are evidence of sudden destruction by earthquake.

THE DEPTH OF THE GANGETIC RIFT.

I have been describing zones of deficiency and have suggested that they are cracks in the sub-crust. I have now the task of discussing the possible depths of these cracks.

By the depth of the Gangetic rift I do not mean merely the depth of the loose sediment; I do not mean the depth at which solid rock is first met with. If a rift has extended to a considerable depth, it may in its lower portion have become filled by solid rock that has fallen in from the sides, or by volcanic eruptions. Even if the Ganges sediment continues down to a depth of some miles, it may itself become consolidated by pressure and heat.

I define the depth of the rift as follows: it is that depth at which the rocks under the Ganges plains are similar to rocks at the same depth under the tableland (plate 2). There may be a solid floor to the Gangetic trough at a depth of 6 miles under Gorakhpur, but if the rocks which are deeper than 6 miles under Gorakhpur are different from and lighter than the rocks of the same depth under the Vindhyan plateau, the solid floor is not the bottom of the rift. When a crack occurs, volcanic eruptions are to be expected, and although there are no volcanic cones rising now from the trough of the Ganges, there probably were at one time. Dr. Pilgrim has discovered that there was great rolcanic activity in the Persian Gulf at one time and that the islands now existing in the Gulf are isolated volcanic peaks. There exists also an old volcanic region in the Syrian desert between Baghdad and Damascus.

In considering the depth of the Gangetic rift we must appeal firstly to geodesy, and then to seismology. Now geodesy tells us that the compensation of the Himàlaya (i.e., the root of the Himalaya) extends downwards to a great depth : Mr. Hayford estimates 75 miles. We do not contend, and Mr. Hayford does not contend that this ralue of depth is proved. The depth may be 60 miles: it is I think of that order. Geodesy says that the depth is great. I regard the Gangetic plains and the Himalayan range to be the two parts of one whole; I believe that they have originated together, and if the depth of Himalayan compensation extends down to 60 miles, then I think that the Gangetic rift may extend down to that depth also.

Now let us turn to scismology: seismologists are able to form rough estimates of the depths of earthquakes. The earthquakes that risit Northern India seem generally to be most riolent at places in the outer hills, such as Dharmsàla, Kátmāndu, Shillong. But the line of fracture that occurs in the sulb-crust at an earthquake may not be vertically under the place which suffers most. If, for example, a fracture in the sub-crust occurred at 60 miles depth under Gorakhpur, the hills to the north might be raised, and this eleration, though a secondary effect, might do more damage at Kätmāndu than the carthquake itself could do at Gorakhpur, which is protected by some miles of soft blanket of sediment underncath it. In the Dharmsāla earthquake Middlemiss
estimated its depth to be between 12 and 40 miles. Middlemiss's maximum ralue is not very different from the geodetic raluc.

It is an interesting question to consider whether a fissure in rocks could extend downwards to a great depth. From a place near the Indus in Kashmir it is possible to see a continuous wall of rock 4 miles in height, in the flank of Nanga Parbat. Mount Ererest stands erect $5 \frac{1}{2}$ miles abore sea-lerel; its summit stands firm and rigid 11 miles above the depths of the Bay of Bengal. We hare therefore evidence that the materials of the crust are strong enough to admit of the continued existence of great differences in altitude.

But Mount Ererest is standing in air, whereas a crack in the sub-crust becomes filled with rocks falling in and with fluid rock magma from below; and the walls of the crack thus get a support that Mount Ererest does not possess. It seems to me quite possible that a crack such as I have described may have extendedi down to a depth of 60 miles by successive fractures at increasing depths, the opening being filled by falling material.

INTERNAL CAUSES OF MOUNTAIN ELEVATION.

I have shown sou how zones of subsidence in the crust are bordered by mountains, and I have now to discuss the relationship of subsidence to elevation, of troughs to mountains. The Red Sea is a zone of fracture, and it is bordered on each side by a zone of elevation. luat along the Bombay coast the zone of sulbsidence is bordered only on the one side by a zone of elevation. The sub-crustal crack from Surat to Cape Comorin has been accompanied by a vertical uplift of the Ghāts, and I suggest for your consideration that the vertical force which elevated the Ghāts was the expansion of the underlying tock due to physical or chemical clange.

Mr. Hayden informs me that the specific grarity of the rock composing the Nilgiris varies from 2.67 to 3.03 , that is 14 per cent., and that the rock of the Hazäribagh plateau varies from $2 \cdot 5$ to $3 \cdot 1,24$ per cent.

The Western Glāts appear to have risen about 4,000 feet. Now we know that the Western Ghāts are largely compensated by underlying deficiency of density ; if the compensation of the Western. Ghāts extends downwards to a depth of 60 miles, then an expansion of two per cent. would be more than sufficient to account for the eleration of the Ghāts. Mr. Hayden tinds rariations of 14 and of 24 per cent. in the densities of surface rocks, and yet an expansion of only two per cent. would account for both the elevation and the compensation of the Ghāts. Geodetic observations show that the compensation is not perfect, and that the Ghāts contain an amount of rock in slight excess of the normal crust: the vertical expansion of rook must thus have been accompanied by a slight horizontal compression insufficient to fold the surface strata, but sufficient to account for the imperfection of the compensation.

The heterogeneous rocks composing the Earth's crust are continually undergoing chauges of structure, known to geclogists as metamorphism. At a depth of 30 miles the temperature is sufficiently high to melt all known rocks; but increase of pressure raises the melting point, and the increase of pressure underground may be sufficiently great to countoract the effects of the increase of temperature. So that at a depth of eren 60 miles rocks may still be solid and rigid, as geodesy leads us to believe they are.

We have to imagine how deep-seated rocks, that have been buried for millions of years under high temperatures and enormous pressures, how they would behave, if a crack penetrating downwards from the Earth's surface reached and disturbed them. I suggest for your consideration that two cracks opening, one on the West Coast and one on the East Coast of India, hare compressed the Indian Peninsula between them. This lateral pressure was insufficient to crumple the table-land; but may it not have been the exciting cause that led deep and ancient rocks to expand vertically and elevate the Deccan? Petrologists will be better able to discuss this question than I am.

The main ranges of the Himalaya are composed of granite; this granite has protruded upwards from below. I suggest that the protrusion of granite is due to expansion of rocks in the sub-crust. The great Himalayan range is 5 miles high; and the compensation of this range, that is, its underlying deficiency of density, is estimated to extend downwards to a depth of perhaps 75 miles. An underground expansion of 7 per cent. would be sufficient to account for the elevation of the Himalaya.*

Many of the faults which intersect the Himālaya may, I think, be ascribed to the shearing, which must have ensued wheu certain areas of the crust were forced rertically upwards by the metamorphism of sub-crustal rock. Many distortions of surface strata may be ascribed to local variations in the vertical expansion of deep-seated rocks.

EXTERNAL CAUSES OF MOUNTAIN ELEvation.

The Western Ghāts are as mountains very small compared to the great ranges that stretch from China to France; the former are an example of rertical elevation without any obvious horizontal compression of the surface; the latter exhibit both vertical elevation and considerable compression by lateral thrust. In the Western Ghāts expansion of the subterranean rock seems to hare uplifted the surface strata without disturbing the latter; in the Himalaya the subterranean rock las expanded to such an extent that it has burst through the surface rocks in the form of granite, and in its protrusions it has pushed aside the surface strata and helped to crumple the latter. The troughs skirtiug the Western and Eastern Gliatts may have been caused by the mere cracking of the sub-crust from cooling. But the Indus-Ganges trough is so large, and the mountains to the north of it constitute so unique a protuberance that the idea arises that some external force must have pulled the Himālaya northwards from India, and must have torn into a great rent the original line of tension that had opened under the Ganges plains.
'The Earth possesses a figure of equilibrium. If the Earth was at rest, its figure would be that of a perfect sphere; as it is rotating, the velocity of rotation has caused much extra rock to be heaped up round the equator : the diameter at the equator is 27 miles longer than the polar diameter.

Sir G. Darwin thought that the Earth's velocity of rotation was constantly boing decreased by the Moon's attraction upon our oceans; he thought that

* If underlying deliciency of mass is greater than the excess of mass in a montain, the plamb-line will be dellected away from the mountain. Overecompensation would theretone accout for dellections alcuy from mountains. But it would not account for tension or aubsidenco in tho fore-deep. Pendulum observations in the outer Himalaya and at Ootncamund indicate not overecmupenstion but imperfect compensation.
the tides were tending to stop our rotation, just as the Earth's attraction has entirely stopped the Moon's rotation. If our rotation velocity is decreased, the figure of the Earth changes and becomes nearer and nearer to a sphere: water can flow from the equator to the poles at once, and the oceans can immediately assume the new form of surface suitable to the decreased rotation velocity. But a superfluity of rock would remain at the equator, and the straining of this towards the poles might cause cracks in the Earth's surface. I do not presume to say that this is the cause of the rent in the Earth's crust hidden below the Ganges plains. All I wish to point out is that these mountains appear, as if they had been pulled northwards out of the Ganges-EuphratesMediterranean rent, and I show you some reasons for believing that the Earth's figure may have undergone deformations. The astronomical cause of these deformations is lidden in the past history of the Earth. In the Permian era an ice age occurred in equatorial regions; if the Earth's rotation velocity were to decrease considerably now, Southern India and equatorial Africa would stand out as rock protuberances high abore the ocean, and would exhibit snow and glaciers.

Every year the Earth is bombarded by swarms of small meteors ; is it not possible that at certain times in the distant past the Earth received larger meteoric masses than in the historic period, sufficiently large perhaps to upset the Earth's equilibrium by displacing its centre of gravity? Its figure would then be forced to undergo readjustments. If the Earth meets a swarm of meteors in space, and if some of them approach within its attraction, it seems possible that almost all the captured meteors may fall upon that hemisphere of the Earth which first meets the swarm, whilst the other hemisphere may receive very few. This would interfere with the Earth's balance.

Whilst something may occur in one age to cause movements of rock towards the pole, another cause may arise at a later date that will tend to oppose those movements. Not very long ago a great ice age occurred, and all Northern Europe and America were buried under ice: an immense volume of sea-water must then have been transferred from the equatorial oceans to the north pole: this may have disturbed the Earth's equilibrium and have displaced its centre of grarity.

In the same ice age the Himalaya and Tibet became capped with greater masses of snow and ice than they now carry. The glaciers that now end at 12,000 or 13,000 feet descended in the Ice Ige to 5,000 feet. This increase in the weight of the Himālaya was an additional deformation of the Earth's figure of equilibrium.

I suggest to you that the great mountains from China to France hare been due, firstly, to a line of fracture from Bengal to Sicily, and, secondly, to adjustments of the Earth's figure.

The Andes trend north and soutll; they are of the same age as the Himálaya. If the Earth's figure is undergoing deformation, and a rent is torn in the crust along an east to west line under the influence of forces seeking to restore equilibrium, it seems possible that secondary cracks might occur and that the Andes may be the result of one of them. The Andes are shown to scale on this chart: you will see that in length they are not very much less than the China to France ranges, but in breadth and mass they are relatively insignificant.

You will notice from this chart (8) the peculiar curve of the northern Tibetan border, concare on the east, conver on the west. This sinuous curve
is reproduced in the north of Persia, and again in the Carpathians. The Persian ranges all have a trend from south-east to north-west except that the Caspian subsidence seems to have pushed rudely in from the north and forced the northern range into a sinuous curve. It is significant that at the point of the Caspian push stands the peak of Demarend, the highest point in all Persia. Elevation is the companion of sulsidence.* Similarly the Lob Nor subsidence appears to hare squeezed Western Tibet into what resembles the neck of a bottle, and on the edge of this subsidence stand the highest peaks of the whole Pämir region. Just as the Deccan table-land was'squeezed between the western and eastern coastal cracks, so has the Tibet table-land been squeezed between the cracks of Lob Nor and the Ganges.

The conclusions which I have rentured to submit to this meeting may be summarised as follows:-
(1) The fundamental cause of both eleration and subsidence is the occurrence off a crack in the sulb-crust.
(2) Mountains are compensated by underlying deficiencies of matter.
(3) Mountains have risen out of the crust from a great depth, possibly 60 miles.
(4) Mountains owe their elevation mainly to the vertical expansion of subjacent rock.

I have now had the great privilege of placing certain problems before you. My endearour has been to point out to this Congress, and especially to its younger members, the many scientific secrets that are lying hidden under the plains of Northern India.

[^7]
TURCO-PERSIAN FRONTIER COMMISSION.

Report by Ligutenant-Colonif C. H. D. Ryder, C.I.E., D.S.O., R.E.

Many attempts have, in the past, been made to settle the frontier between Turkey aud Persia; extending as it does from the Persian Gulf to Mount Ararat, through very inaccessible country peopled by Arahs and Kurds who owe only a nominal allegiance to either side, it is not to be wondered at that this problem should have defied a solution for so long a time.

The first serious effort, started in the year 1849, came to an abrupt conclusion owing to the Crimean War, and even after that war it was many jears before the results of the Commission were published in the slape of a map of a strip of country about 30 or 40 miles wide, somewhere within whose limits the mediating, i.e., British and Russian Commissioners, declared the frontier lay. This map in 10 large sheets on the scale of 1 inch $=1$ geographical mile known as the Identic Map formed henceforth the basis of future discussions, and was in fact accepted as such for the purposes of this Commission.

A further effort to settle the frontier was stifled by the Russo-Turkish War of 1878, after which the subject hardly got beyond the discussion stage until after many delays the protocol of 14th November 1913 was signed by the four Governments concerned and an International Commission was formed to make one more attempt to settle the frontier.

This protocol was of value in that it placed a great part of the frontier beyoud the regions of discussion, and, in cases where the I'urkish and Persian Commissioners might disagree, contained the invaluable proviso that they should withia 48 hours place their points of view and arguments before the Mediating Commissioners who would then and there decide the question. I strongly commend this point to those who have to settle frontiers in the future; the parties chiefly concerned often disagrecing on principle and only wanting a third party to decide the question for them.

The four Commissioners were to meet at Muhammareh in December 1913, aud to accompany the British Commission a detachment was formed from the Survey of India, consisting of Lieutenant-Colonel C. H. D. Ryder, C.I.E., D.S.O., R.E., Major H. McC. Cowie, R.E., Mr. Haji Abdul Rahim, K.B., Extra Assistant Superintendent, Mr. Sher Jang, K.B., Sub-Assistant Superinteudent, Surveyors Hamid Gul and Sijawal Khan and 42 khalāsis. Leaving Karachi on 6th December the bulk of the party reached Muhammareh on 12th December 1913, Major Cowie remaining at Būshire for a week for longitude observations.

The British Commissioner, Mr. A. C. Wratislaw, C.B., C.M.G., and the Secretary to the Commission, Mr. G. E. Hubbard, who had both come out from England, arrived by the same steamer. Captain A. T. Wilson, Deputy Commissioner, was already at Muhammareh making preliminary arrangements, while Captain A. H. Brooke, 18th K. G. O. Lancers, commanding the escort of 30 men of his regiment, and Captaiu II. W. Pierpoint, I.M.S., Medical Officer, joined a fortuight later. Captain F. L. Dyer, 93rd Burma Infantry, who was then studying Persian at Muhammarch, was afterwards attached as transport officer.

We found a good caurp pitched by Captain Wilson in readiness in the desert just outside the palm groves, the Russian Commission being located in a house in the town.

The personnel of the other Commissions was as follows :-
Russian Commission.
M. V. Minorsky, Commissioner.
M. D. Bilaiew, Deputy Commissioner.

Captains Tshahakaya and Aliew, Survey staff, streugthened at a later stage by Lieutenant-Colonel Krimliknff, and Captains Yordanoff, Yemilianoff, and Chernoff, also Lieutenant-Colonel Andriewsky in charge of the survey and escort.
They were accompanied by a medical officer, Dr. Volodyeusky, and. various officers in command of the Cossack escort.

- Turkish Commission.

Major Aziz Samil Bey, Commissioner.
Captain Abdul Hamid Bey, Deputy Commissioner.
Basri Bey, Secretary.
Captain Mehmet Effendi (replaced later by Captain Salih Effendi) and Lieutenant Kadri Effendi, Survey Officers.
A medical officer and escorts of varying strength.

- Persian Commission.

Etela-ol-Mulk, ,Commissioner.
NIansur-es-Sultaneh, Deputy Commissioner.
Salar Muzaffar, Military Adviser.
Abdur Rezagh Khan, Survey Officer, and two topographers.
A medical officer and escort of Persian Cossacks.
Pending the arrival of the Turkish and Persian Commissions, ve obtained the longitude of Fano, at the mouth of the Shatt-al-'Arab by telegraphic connection with Būshire, a station of the longitude operations of 1895 connecting India with Eugland. All attempts to carry up a series of small triangles from Fan to Miuhammareh on the banks of the river were frustrated by the upsetting of a boat and loss of a good deal of the khuläsis' kit, and a naval triangulation was accepted in its place. Nasiri (Ahwāz) was also cọnnected with Muhammareh by telegraphic longitude observations, the former place being the starting point for Major Cowie's triangulation. The Persian Commissioner had arrived with the Russians by sea in a Russian steamer, but the rest of his staff came overland from Tehrann, via Baghdad, and being delayed by a visit to Kerbela did not arrive till the middle of January 1914 about the same time as the Turkish Commission. Further valuable time was spent in the necessary formal exchange of calls, and serious business only commenced with the first full meeting of the Commissions on 21st January in a fine house belonging to the Clief Minister to the Shaikh of Muhammarel.

The Commissioners were desirous that the Identic Map, already referred to, should be used as much as possible and for the first portion of the frontier, the Shatt-al-'Arab itsolf, this was possible, the Persian bank of the river forming here the frontier, but as we progressed the reputation of this map became less and less sacrod, as glaring errors were discovered, till finally it was abandoned and new maps of the frontier and its neighbourhood were prepared.

A more or less formal trip down the river to Fio, and up river to the point where the frontier leaves the river, constituted our first work of the demarcation, the first pillar being built at this latter point, consecrated by the
slaughter of a sheep, speeches of mưtual congratulation, and a large lunch in Arab style provided by the local Shaikh. Geniality and good fellowship per. raded the air and enntinued with but fert interruptions throughout the duration of the Commission ; I doubt very much whether any Frontier Commission has been carried through with so little friction, taking into account the long standing feud which had existed between Turks and Persians over the frontier.

The boundary after leaving the Shatt-al-'Arab disappeared into the desert, and all that was necessary was to build a few pillars to give its direction and then risit Kushk-i-Basri in the desert to pick up the line again. This place, orer 30 miles from Mubammareh, was somewhat difficult of access owing to the lack of water, however by going up the Kärūn river for a day by steamer we got within 20 miles and then marched across the desert. We here had our first experience of desert work; the long weary march ever in sight of camp but never getting there, the heat in the daytime with its attendant mirage, the cold at night, and on our return journey heavy rain which turned the hard dry desert into a slippery marsh, making any progress at all a difficult matter, all formed an interesting first experience, but one which we had repeated too often during the next three months to appreciate its real delights. Truly Mesopotamia is a difficult country to survey in ; the cold weather is the rainy season, and during the hot weather, after the end of March, any obscrvations even of the roughest nature are next door to impossible owing to the mirage.

On this trip we noticed a curious feature in the otherwise monotonous desert in a large number of parallel lines having the appearance of canals filled in containing evidently something different in their soil, as small bushes grew more frequently there than in the rest of the desert; their width was from two to four yards and in places they converged with all the appearance of disused railway sidings; many theories were adranced but these lines remained a mystery to us.

Having put up our pillars near Kushk-i-Basri and turned the frontier line into the marshes we returned to Muhammareh to make prejarations for our further advance.

On 14th February we made our final start, each Commission marching separately. Three long marches up the right bank of the Kärun river and an equally long one across the desert brought us to Kut Saiyid Ali on the Karkheh river which we crossed the same afternoon, and called a very necessary halt for a day, prolonged for another day on account of a storm of wind and rain which brought down several of our tents and rendered marching impossible owing to the mud.

The Karkhel is a fine river 100 yards wide with a fast flow of fresh water which used to irrigate a large tract of country; a sudden charge of its bed left the irrigated country high and dry and the greater part of its waters now flows into the huge marsh extending to the banks of the 'ligris and is lost therein. No very extensive works could howerer easily render the tonguc of land between the Karin river and the Tigris once more fertile and able to support a large population. The Arals in these parts iuhabit the banks of rivers and marsh during the summer, their reed huts extending for several miles along the banks turn the river at a village like Bisaitin into one long street. Our next two marches were done by boat, linding occasionally for partridge and snipe shooting, while our caravan followed the land route. At lisaitin on

21st February we caught up Major Cowie and the surveyors who had been working ahead and marched all together to Umm Chir (the mother of pitch), a desolate spot which had been agreed upon as the next meeting place of the Commissioners, and at which the frontier line issued from the marsh into which we had consigned it west of Kushk-i-Basri.

A week's halt here made us all the more anxious to get on, as our start had been very late in the season, and the weather was already beginning to warm up. From bere to the Darrairij river, a distance of 26 miles, the Identic map proved very unreliable and the old bed of the Shatt-al-Ammah which had been daid down as the frontier was in many places hardly visible having been filled up by moving sand dunes.

Another week's halt at the Dawairij river was necessitated by the river coming down in a heavy flood. The British Commission camped in the bed of the river, but fortunately crossed next morning through the rising water, though we had to move our camp twice before we were safe from the ravages of the flood. For several days the river amused itself by cutting away its bank, large masses of which fell constantly into the river with noises like the booming of heavy guns. The other Commissions were unable to cross the river for several days and then did so with difficulty having also to move their camps further and further away from the original banks; once in safety oneself it was a source of amusement watching another Commission hastily striking its tents and retiring before the rising flood.

Once across, however, the work progressed with some rapidity as our surveyors had not been wasting their time. The Identic Map had fallen into marked disfavour and we had our surveyors on ahead mapping the country preparatory to the arrival of the Commissions. All these maps were based on the triangulation carried through with unflagging energy and great accuracy by Major Cowie, the necessity of keeping up the computations pari passu with the observations to have this framework constantly ready for work of the surveyors, necessitated his working far into the night and was the subject of much admiration on the part of our colleagues in the other Commissions. We had now reached the foot of a low range of foot-hills thrown out to the south of the Pusht-i-Kūh range, the hills remaining in Persia while the plains inhabitated by Arabs were left to Turkcy. The foot of this range was followed for three days, till we arrived at the Tyb river on 11th March. A week's halt here, although nccessary, was rendered very unpleasant by the disgusting nature of the only water we had to driuk; concentrated Epsom salts was our verdict on its quality.

The increasing heat and lack of potable water rendered the work of surveyiog and domarcation very arduous. After leaving the Tyb river we had to march away from the foot of the hills into the plain, camping a night at Qara Tapah, a small mound from which we could see passing boats and a steamer on the Tigris, floating in the air owing to the mirage, on its way to Baghdad. We reached Bägh-i-Shähi (Baksai) on 19th March and again put in a prolonged halt according to our usual and indeed unavoidable custom. it these halts several meetings of the Commissioners would be beld at which tine immediate frontier would be settled in detail while often a gool stretch of frontier ahead of us was also fixed in gencral terms, and Sub-Commissions consisting of a representative of each nation were sent out to put up the
necessary pillars while time was thus given for our surveyors to get on with their work well ahead of the main body.

Baksai and the lands of Saiyed Hassan 30 miles distant had loug been in dispute betreen tho Turks and the Vāli of Pusht-i-Kūh on the Persian side, and finally a compromise had to be effected, disliked by both parties and therefore probably fair. Our doparture from Baksai was followed by a severe intertribal fight amongst the Turkish Arabs, many being killed and wounded on both sides, the fight taking place in the presence of some Russian and Persian officers who had remained behind but were not interfered with.

We arrived at Zurbatiyah, a small Turkish town, on 6th and thence marched to Maudali where we arrived on 10th April, without incident except for a mareh through a dust storm the day we left Zurbatiyah. Mr. Wratislaw left us here for a short stay in Baghdad on account of his health, rejoining us a month later at Qasr-i-Shirin.

Mandali is a prosperous little Turkish town surrounded by palm groves and fruit orchards, depending for their water and life on a stream issuing from Persian territory. The rights in this water had long been in dispute, the Vali of Pusht-i-Küh often tbreatening to divert it and thus bringing pressure to bear on the Turks to admit his claims in other directions. As usual a compromise was effected and we entered on 17th April an unpleasant region of low hills from which the nomads had already cleared out on account of the heat. Oil wells were here in dispute and had to be arbitrated on; grazing was scarce and water bad, but we were relieved by a storm of wind one night, which levelled all our tents, followed by a very welcome downpour of rain which cooled the air and gave us some much appreciated drinking water.

On 25th April assisted by this short bout of conler weather we arrived at Qasr-i-Shirin where a general halt had been decreed to give every one a well earned rest, the neighbourhood of Baghdad enabling the Turks especially to enjoy a return to civilisation. Our time, however, was not wasted; fair maps. were prepared as far as Mandali and despatched for publication, descriptions of the frontier were compiled and a general refit of kit, etc., was found very nccessary.

Mr. Haji Abdul Rahim, K.B., with some khaläsis and ten of the escort returned from here to India via Baghdad. The ruins in the neighbourhood of Qasr-i-Shirin would well repay a more careful examination than me were able to make.

Leaving Qasr-i-Shirin ou llth May and marching via the Zūhäb plain we reached Bawisi, a small village at the foot of the Bamu mountain, the following diy, and from there entered hilly country, and crossing the Shirrwan river on the 22nd arrived at Balkeh on the 25th May. Rain that day and the fact of our having reachel an elevation of 4,700 fect brought the temperature down 20° and rendered the prolonged halt at this placeand Biare one of the pleasantest we had. The Avroman range on which snow still lingered towered above us, while the narrow valleys were filled with walnut, mulberry and other fruit trees through which flowed sparkling brooks of cold water fresh from the many springs for which this range is famous. Our halt here was due partly to the intricate nature of the frontier which cut across those fertile valleys, and partly to the local Turkish officers not having received orders for the evacuation of a post they occupied within Persian territory.

These matters having been satisfactorily adjusted we marched once more on 11 th June and dipping down to a plain at a height of 1,900 fect (maximum tẹmperature 106°) crossed the Avromān range by a low pass, Chakan, and camped at Piran, a pretty spot and a pleasant climate. Our stay here mas however a disastrous one, as the Persiau Doctor, Hussain, met with an accident while out shooting, and had to have his right hand amputated. This he bore with great pluck and won our admiration by his cheerfulness under depressing conditions; he accompanied us, in charge of Captain Pierpoint, as far as Vaznel.

Major Cowie triangulating and our surveyors doing the detail survey had worked so well alead that in the next week we were able to demarcate a long strip of the frontier, arriving on 23rd Juac at the village of Tchampar-av where the frontier left the watershed to include this village in Persia.

From here onwards we were well amongst the Kurdish uplands and only went below an elevation of 4,000 feet to cross the Lesser Zàb river on 2ud July.

It had been a great strain on every one, owing to our late start, in having thus to push on with the work during the heat of the summer, but we could now see ahead of us a probability of completing the demarcation of the frontier before winter set in, very much earlier in fact than had ever been thought of in previous estimates of the time required.

We were now in the neighbourhood of latitude 36° and the Russians after some delays took over the main topographic work. The fine upland plain of Vazneh was reached on 17th July, height 5,300 feet, and even there the maximum temperature was always in the neighbourhood of 90°.

Here, to our great regret, Mr. Wratislaw was obliged to leave for England on sick leave, Captain Wilson succeeding him as Commissioner, and Lieuten-ant-Colonel Ryder becoming Deputy Commissioner in addition to his own duties.

We left Vaznch on 24th July, and the following day entered the treeless tract which continues right up to Mount Ararat, and renders the scenery decidedly monotonous. From here onwards the frontier followed with a few exceptions a well marked watershed, forming a natural boundary. It never has been and never will however be a true international frontier as the Kurds from either side come up into the hills for the summer and by mutual arrangement amongst each other, Turkish tribes graze their flocks on the Persian side and vice versá. 'Ihis watershed was easy of demarcation as it was only necessary to place pillars on the main passes, a work carried out by small Sub-Commissions while the main body of the Commission for convenience of transport could keep to the main roads further away from the frontier, and thus reached the small Persian town of Ushnū on 28ilh July. Our halt of four days was enlivened loy the genial hospitality of a detachment of Russian troops stationed there.

Leaving Ushnū on 2nd August we turned agaìn towards the frontier reaching Margawar next day and that afternoon received news of the outbreak of war, although it was not till three days later that we heard of our being involved therein. The work of demarcation however continued, but a move was made into Urūmich on 8th August to be nearer a telegraph office and to give every one another well earned rest. Here we were again the recipients of warm-hearted hospitality from the Russian garrison.

The political horizon being now cloudy, the halt at Urumieh was cut short and the Commission leaving on 15th August moved out again in two marches
to the frontier where the boundary had to be demarcated across two valleys situated a march apart. Each of these necessitated halts of a few days, after which the main body of the British Commission under Lieutenant-Colonel Ryder marched for Kotour, while Captain Wilson accompanied the other Com. missions demarcating along the watershed. Passing through the valley in which Kuhne Shalir is situated we turned again into the mountains to cross on to the Turkish side.

On 31st August we arrived at the small Kurdish village of Ushnak and that afternoon while out shooting were attacked by a party of armed Kurds resulting in Mr. Hubbard being severely wounded. Arrestiug the guilty parties and to give Mr. Hubbard's wound time to heal necessitated several days' halt; Captain Wilson rejoined and moved down to Khōī with Captain Pierpoint in charge of Mr. Hubbard, who then had to be invalided to England. The Commissions moved on to Kotour, where we arrived on the 6th September, en route obtaining our first view of Mount Ararat, a vision which spurred every one to push on with the work, the end of which was thus in sight.

The delimitation of Kotour, where the fronticr line has to cross a valley, forms a history by itself, many attempts have been made all resulting in failure, and once more we had to. acknowledge defeat, and leave it undemarcated, a length of 40 miles in a frontier of over 1,100 miles forming the only portion of the delimitation which had to be left incomplete. On 9th September the Turkish Cornmissioner announced that he had received orders to cease work, and we all set to work to complete maps, description of the frontier, etc. These being completed up to Kotour, our Turkish colleague announced that he had received orders to omit Kotour and continue work to the north. This being agreed to we left Kotour on 18th September, not before having made a complete map of the district for future use, and crossed over on to the Turkish side. On 22nd September Major Cowie, Captain Brooke and the escort left to join Captain Wilson at Khōi, from whence they left for India. The two former officers with Captain Dyer proceeded ria Julfà to Batoum where they caught up Captain Pierpoint and Mr. Hubbard and although the Dardanelles were closed they were able to reach Constantinople by sea, and thence by rail to Dedeagatch and by steamer to Port Said. The escort under Jemadar Tiwakli, with Surveyor Sijawal Khan and khalēsis, marching via Kirmānshāh and Isfahān, reached Muhammareh in January 1915.

The Commissions continued up the Turkish side demarcating the frontier as far as Kazli-queul, on the Persian side, which was reached on 27th September 1914. A halt here was necessary for a rather intricate piece of demarcation, but a severe snowstorm on 2nd October drove the Turkish Commission into Bayezid, while the remainder moved down to Kalissa Kandi aud thence on 6th October to Bazirgan where Captain Wilson rejoined us. This was our last camp and one which we were not sorry to say good-bye to. Thine Turkish Commissioner never rejoined from Bayezid and his place after some delay was taken by his Deputy; however three weeks of patience and we were able to complete the work across the last valley and up the lava slopes of Mount Ararat to the neck joining it to Little Ararat and were able to have a final séance on 28th October and march into Makū that cvening. A week previously Mr. Sher Jang and Hamid Gul had left with our few remaining men to march ria Tabriz to the Persian Gulf. Captain Wilson and LieutenantColonel liyder drove on 29th October in pouring rain into Shāh Talilhti, 35

TURCO-PERSIAN BOUNDARY COMMISSION, 1914.

miles, the nearest railway station on the Julfā line ; here next morning we heard of the Turks having bombarded the Black Sea ports, and realising that this meant their joining in the war, and closing the Constantinople route, we sent our servants with Mr. Abdul Alim to catch up Mr. Sher Jang's party, who got through to Būshire towards the end of January 1915 and travelling ourselves under the good auspices of Captain Tshahakaya reached Tiflis on 1st November 1914. Staying there only a few hours we left the same night after a recaption of great warmth from the crowd at the station, and reached Baku on 2nd. We then decided that it was inadvisable to travel across Persia by ourselves, and that it would be best to go to Petrograd, so staying one night at Baku to avail ourselves of the company of Mr. Wilton, the King's messenger travelling from Tehrān to Petrograd, we left on . 3 rd and reached Petrograd on 6tt November. We were then advised to take the Arcliangel route and leaving the same night, arrived there on 8th November, and after a delay of several days finally got started, broke our way through the ice in the river, and got out to the open sea.

Our route lay woll into the Arctic Circle, passing the North Cape, latitude 70°, then lugging the Norwegian coast and steaming down the Fjords through magnificent scenery, but great cold, the whole country then being under snow, we were fortunate enough to see the Aurort Boraalis on two nights, and reached England without incident on 21st November.

As regards the technical work of the Commission, the greater part was undertaken by the British up to latitude 33° and the Russians after that point, the Survey officers of the Turkisi and Persian Commissions not having the uecessary experience, but I should add that they worked cordially with us and accepted our surveys without hesitation, a fact in great part due to the confidence inspired by our Indian surveyors, all Wahomedans.

As it would have been impossible for any system of rigorous triangulation to kecp pace with the work of the Commission, the system adopted for the triangulation was as follows :-

As the starting point Nasiri (Ahwäz) which had been connected in longitude, as already described, with Büshire, observations were taken for latitude and azimuth, and a base was measured with an Invar tape. With these data Major Cowie carried on a regular scries of triangles as far as Umm Chir. From there to the Tyb river trigonometrical conuection was maintained, partly by a regular series of triangles, partly by a short length of theodolite traversc. From the Tyb river onwards the regular series of triangles was discontinued and the following methods employed : from the advanced stations of the regular series two or more points in the directions in which we were moving were fixcd by observations; when the Commission had marched to a suitable place in vadvance of these fixed points a base was measured, latitude and azimuth determined astronomically and a small network of triangulation carried out; from stations of the network olservations were made to points fixed in rear permitting of the determination of the longitude of the network and at the same time further advanced points were fixed and used as described above when the Commission had in due course marched beyond them. This process was repeated as often as necessary, the last occasion being at Urūmich, after which the Russians assumed responsibility for further work as they had already fixed many points by graphic triangulation on their large plane-tables. The results of the triangulation will be published on two shects.

It had been laid down in the protocol of 14th November 1913 that the Iden. tic Map was to serve as a base for the topographical work, but it soon proved insufficiently accurate for purposes of frontier demarcation. It was however decided to adopt the scale of this map 1 inch $=1$ geographical mile, or $\frac{1}{3, j, 300}$ for our surveys, and this scale was retained with one exception for all maps up to Intitude 36° when the Russian scale 1 inch $=2$ versts ($-\frac{1}{0,0000}$) was adopted as they had already printed maps on this scale of the Persian side of the frontier.

The exception above named was for " Carte Supplementaire No. 7 " where the scale of 1 inch $=t$ English miles had to be adopted owing principally to the lack of water.

The Identic Map was accepted for :-
(1) The Shatt-al-'Arab.
(2) The desert and march thence to Umm Chir.
(3) Between the Tyb river and near Baksai where the frontier simply followed the foot of the hill.
(4) The shirwān river.
(5) The Avroman range.
(6) The Kialou (Lesser Zāb) river.

It will be noticed that these comprise in most part in eaoh case a single topographical feature which itself formed the frontier and of which an accurate map was not a necessity. The system adopted for carrying out the work did not vary greatly; while we were responsible for the survey one or two surveyors supplied with topographical points by Major Cowie were sent on shead and had their map ready by the time the Commission arrived.

From latitude 36° the Russian 2 versts map was completed by surveys on the Turkish side, and made use of, while our surveyors were employed making larger scale surveys of those areas which were under dispute, that is, of those places where the frontier left the watershed.

The country traversed was throughout, excopt between Mandali and Qasr-i-Shirin, of an easy nature for surveying, especially in the absolutely treeless region in the north; the difficulties we had to contend with were:-
(1) The want of water in the south and the great heat which resulted in haze and an abnormai amount of refraction.
(2) The tension in the north owing to the war and the general lawlessness amongst the tribes, Arab, Persian and Kurdish, along the whole frontier.
(3) The rapility with which the Commission worked necessitated very rapid work on the part of the surveyors which again encouraged the Commission to work fast.
The British Survey detachment surveyed 7,500 square miles on various scales.

The length of the frontier from Fäo to Mount Ararat is 1,180 miles, of which 1,140 miles were demareated, 227 pillars being erected, leaving only 40 miles undemarcated near Kotour.

In addition to the field work fair maps showing the frontier line have had to bedrawn and were approved and sigued by the Commissioners, 25 of such maps entitled "Cartes Supplementaires" were required as well as 10 "Cartes Detainees" on larger scales to show difficult portions of the frontier.

Each nation had two manuscript. copies of each of these 35 maps. The publication of the sheets 1 to 8 was undertaken by the Survey of India, Calcutta, the rapid and excellent printing of which enalled copies to be distributed before the close of the Commission ; the remaining sheets were reproduced 6 to 15 by the War Office, London, and the remainder by the Survey of India.

The frontier line was also drawn in as accurately as possible taking into account inaccuracies on the map on 10 photographic copies of the Identic Map and on many copies of the reduced Identic Map.

I cannot close this report without referring once more to the energy, tact and skill displayed by the Survey detachment, Major Cowie, Mrr. Sher Jang, K.B., and Surveyor Hamid Gul being worthy of special mention.

The sympathetic courtesy of Mr. Wratislaw, the energy of Captain Wilson and the tactful friendly demeanour of M. Minorsky, Aziz Bey, Etela-ol-Mulk and the members of the various Commissions contributed in no small degree to the success of the Commission.

All the officers of the British Commission were at various times willing victims to our demands for assistance in measuring bases and recording observations, while M. Minorsky who was accompanied throughout by his charming aud energetic wife assisted us greatly by checking the spelling of names.

Of our technical colleagues, especially Captain Tshahakaya, the Persian Sartip Abdur Rezagh Khan and Lieutenant Kadri Effendi who all three accompanied the Commission from start to finish, I retain the warmest remembrance of their tact and friendliness often under difficult circumstances.

NEPĀL-PILİBHĪT BOUNDARY SETTLEMENT.

By Mator E. A. Tandy, R.E.

1. A reference to pages 93 to 97 of Records of the Survey of India, Volume V , will show the commencement of this work, which involved the alignwent of straight links in place of the curved boundaries along the old course of the Särda river. As will be seen in the above report the straight links laid out for the Naini Tal portion of the Nepāl boundary, i.є., up to old Reference pillar No. 27 (new Boundary pillar 17), were accepted by the Governments concerned; but the proposals concerning the Pilibhit portion (east of old Reference pillar No. 27) were not accepted by the Nepal Durbar.
2. It was therefore decided to hold a fresh Boundary Commission to reconsider this portion during the winter of 1914-15.

Of this Pilibhit boundary there were ouly two portions falling on or quite near to the Sārdā river, namely, between old Reference pillar No. 27 and old Boundary pillar No. 19, and further east between old pillars Nos. 15 and 12. The interval, between pillars 19 and 15, lay on higher ground and therefore was not included in the preliminary work.
3. Preliminary work.-A small detachmeut, consisting of Mr. S. C. Mukharji, Sub-Assistant Superintendent, together with one traverser and one computer, was sent out in December $191 \pm$ to traverse over the two river sections mentioned above, and to correct the topography of the special 2-inch boundary maps of the previous year in respect of the latest movements of the river in the immediate vicinity of the boundaries. The jungle was cleard and the new raverses were run, not only along the old curved boundary, but also along possible alternative alignments.

This work was finished in January 1915, when the results were brought back to Dehra Dūn for final plotting and fair drawing, and arrangements were made for the Boundary Commission to meet on the ground.
4. The settlement. - Major E. A. 'Tandy, R.E., with the above detachment

Mr. G. Adnms, I.C.S., Magistrate and Collector, Pílibhīt.
Khan bahadur Mangal Khan, Zemindar, Shrypur.

Lieutenant Clandra Shekhar Upadbja, Hakim of the Amini Kacheri, Kailati-Kinnchanpur.

Liéntenant hasudeva Sharma Uparlhya, Officer in charge of the Nepilese state Forests, Nayä Mulk.
met the Commission noted in the margin, together with Lieutenant-Colonel J. Manners-Smith, V.C., C.V.O., C.I.E., Resident in Nepăl, on the 15th February 1915. With the assistance of the maps previously prepared it did not take long to examine all the possibilities on the ground, and a Rubkar was drawn up on the 21.st February recommending the following settlement :-
(a) Starting from pillar No. 211 (the trijunction of Nepāl with the Kheri and Pilibhit districts) it was agreed that the eastern portion of the Nepāl-Pilibhit boundary as far as pillar No. 12, being on welldefined and high ground, required no alteration.
(b) From pillar No. 12 the boundary was to be aligned to a point distant about 17 to 18 chains to the W.S. W., where a new pillar was to be erected. From here the boundary was to run in a straight line to a similar point about 6 to 7 chains S. W. by S. of pillar No. 15, where also a new pillar was to be built. The remaining straight lines were to be:-from this point to pillar No. 19 ; from 19 to 21 ; from $\& 1$ to a point S. of Bandar Bojh Gauri so located that the total loss of arca to Nepāl was not to exceed 200 acres; and finally from this point to pillar No. 17 of the Naini Tāl-Nepāl series.
(c) It was further agreed that the numbering of the pillars was to be changed in continuation of the Naini Tall-Nepall series, throughout the Pilihbint district up to its enstern limit (old pillar No. 211).
(d) A clearing of 60 feet throughout the boundary was to be kept as a neutn:ll strip.
(e) After this boundary had been traced on the ground the Survey Department was to supply 2 copies of the map to each side, one copy of which was to be signed by the representative of each Government and given to the other in token of their acceptance.
5. Final alignment.-Mr. S. C. Mukharji, with his detachment, was then left to lay out the new boundary in accordance with the above agreement, and to fix it by traverse.

The boundary was laid out by plane-table on the scale of 16 inches to 1 mile, every peg being subsequently fixed by trarerse. The field work was completed by the end of March.
6. Demarcation.-Along the whole line a clearing of 3 or 4 yards width was carried through the jungle and wooden pegs were put in at every furlong. These were of the nature of large tent-pegs and their site was further marked by 4 small "pointer" trenches about 1 foot deep. No demarcation of any kind was made across the areas covered with river sand and water, where marks would be washed away at once and the land is of no value.
7. New pill a's.-The proposed sites for new pillars were marked by large wooden stakes, ahout 6 or 8 inches in diameter, and standing 6 foet to 20 feet above ground. They were surronnded by a circular 2 -foot trench, the spoil
from which was formed into an earthen pillar round the stake. From this circular trench "pointer" trenches were dug as in the case of pegs but somewhat larger.

The sites were so selected that the materials from the existing pillars might be utilized with the least possible expense. Three old pillars, viz., 12 , 19 and 21 , have been included in the series, and the only thing they need is the change of numbers.
8. The total loss to Nepal was just under 200 acres. This balance against Nepāl was agreed to owiug to the large excess of water and saud included in the areas they concede in straightening the houndary between old pillars 15 and $1 \Perp$; and also in consideration of concessions receivel by them in other districts.
9. The new boundary has been entered on the 2-iuch boundary maps prepared the year before, and has been duly accepted by the Government of India and the Nepāl Durbar ; but the final demarcation of the line by pucca pillars and the renumbering of the old pillars have been postponed till after the rains of 1915. The Survey of Iudia has no responsibility in reference to this permanent demarcation, having supplied the local authorities with com. plete maps showing the line as temporarily laid out.
10. The traverse data have been stored in the office of the Trigonometrical Survey, Dehra Dün. Sixty copies of the two new boundary maps were printed and most of them distributed to those concerned, the balance being stored with the Map Record and Issue Office, Calcutta.

Description of the new boundary Letween Nepäl and Pī̀z̄hīt district, as settled in 1915.-(The alterations in the boundary have not yet been permanently marked by pucca pillars, but this is to be done next cold weather.)

The boundary runs in straight lines between the following pillars. Bearings are referrible to the origin of Survey, viz., Sultānpur G. T. S.

Pillar No. 17.-Trijunctiou with Nainī Tāl district, vide Nepāl-Nainī Tāl Boundary description.

Boundary 17 to 18 .—Distance 87.65 chains and bearing $144^{\circ}-18^{\prime}$.
Pillar No. 18.-Is situated on the bank of a dry Nala 14 chains S. S. W. of Bandar Bojh Gauri.

Boundary 18 to 19.-Distance $25^{\circ} \cdot 44$ chains and bearing $83^{\circ}-25^{\prime}$.
Pillar No. 19.-Is situated in Chāndni Chauk ou high ground about 8 chains E. of Sannia Nāla.

Boundary 19 to 20.-Distance 6089 chains and bearing $83^{\circ}-25^{\prime}$.
Pillar No. 20.-Is situated in Nojalla Naltha in thick forest of Jaman and Raini about 5 chains E. of Sanuia Nãla.

Boundary 20 to 21.-Distance 43.77 chains and bearing $83^{\circ}-25^{\prime}$.
Pillar No. 21.-Is situated in Nojalha Naktha in an open forest.
Boundary 21 to 22.-Distance 81.05 chains and bearing $83^{\circ}-25^{\prime}$.
Pillar No. 22.-Is situated on the S. E. corner of the island of Chăndai Chauk near the junction of Sannia Nāla with the river Sārda (old B. p. थ1)

Boundary 22 to 23.-Distance 78;72 chains and bearing 130 ${ }^{\circ}$.23'.
Pillar No. 23.-Is situated in an island covered with grass and young shisham on the dry bed of the river Sārda.

Boundary 23 to 24.-Distance 19.85 chains and bearing $13 j^{\circ}-26^{\circ}$.

Pillar No. 24.-Is situated on the high bank of a dry Nāla about 29 chains N. N. E. of Andua Gauri, W. of track from Andua Gauri to Shukla (old B. p. 19).

Bomulary 24 to 25.-Distance $44 \cdot 28$ chains and bearing $137^{\circ}-19^{\prime}$.
Pillar No. 25.-Is situated on track from Andua Gauri to Setha-Khera.
Boundary 25 to 26 .-Distance 100.00 chains and bearing 137 ${ }^{\circ} \cdot 21^{\prime}$.
Pillar No. 26. -Stands in heary jungle about 3 chains N. of a dry Nala.
Boundary 26 to 27 .-Distance $88 \cdot 40$ chains and bearing $137^{\circ}-21^{\prime}$.
Pillar No. 27.-Is situated on high ground in an open forest.
Boundary 97 to 23. Distance 189.03 chains and bearing $124^{\circ}-25^{\prime}$.
Pillar No. 28.-Stands at the edge of a shisham grove in a grass plain.
Boundary 28 to 29. -Distance 77.02 chains and bearing $124^{\circ}-28^{\prime}$.
Pillar No. 29.-Stands on high bank of Bamhni Nāla at the edge of dense Khair jungle about 12 chains N. of Dobhānia Gauri.

Boundary 29 to 30 .-Distance 17.36 chains and bearing $72^{\circ}-46^{\prime}$.
Pillar No. 30.-Is situated on W. bank of a dry Nāla in a khair forest about 24 chains N. W. of Dobhānia Gauri (old B. p. 12).

From pillar 30 onwards.-The old boundary has remained unchanged, excepting that the pillars are to be renumbered as follows:-

No. 11 becomes 31.	No. 7 becomes 35.	No. 3 becomes 39.
No. 10 becomes 32.	No. 6 becomes 36.	No. 2 becomes 40.
No. 9 becomes 33.	No. 5 becomes 37.	No. 1 becomes 41.
No. 8 becomes 34.	No. 4 becomes 38.	

APPENDIX.

List of Survey of India Publications.

Appendix.

LIST OF PUBLICATIONS

SURVEY OF INDIA.

CONTENTS.

A-HISTORY AND GENERAL REPORTS.

Page,
Memoirs i
innual Reports $\left\{\begin{array}{l}\text { General Reports } \\ \text { Extracts from Narrative Reports } \\ \text { Records of the Survey of India }\end{array}\right.$ i
Records of the Surrey of India . . . ii
Special Reports ii
B-GEODETIC WORKS OF REFERENCE.
Everestys Great Arc Books ii
G. T. S. Volumes ii
Sinoptical Volumes iii
Triangulation Pamphlets iv
Letelling Pampelets iv
Tide Tables iv
C-CATALOGUES AND INSTRUCTIONS.
Depattmental Ordfrs iv
Catalogues and Lists v
Tabifes and Star Charts v
Old Manuals v
Survey of Inda Hand-books vi
Notes and Instrictions ri
D-MISCELLANEOUS PAPERS.
Unclasstfied Papers $\left\{\begin{array}{l}\text { Gcography, Special Reports }\end{array}\right.$ vi
Professional Papers vii
Departmental Papers viii
Professional Forms viii
l'ublications of the Royal Society viii
Agents for the Sale of Indtan Offioial Publigations v111
Index to Trianoulation Pamphlets and Charts published isupto 31st December 1916.

APPENDIX.

List of Survey of India Publications.

A-history and orneral reports
B-geodetic works of reperteno
C-catalogubs and instructions
D-migcellanious papers

Note.-Unless otherwise stated, the publications are obtainable from

The Superintendent, Map Publication, 13, Wood Street, Calcutta.

A-HISTORY AND GENERAL REPORTS.

MEMOIRS.

1. A Memoir on the Indian Surveys. By C. R. Markham . India Office, London, 1871. 2. Ditto (second edition). By C. R. Markhain, C.B., F.R.S. India Office, London, 1879.
2. Abstract of the Reports of the Surveys and of other

Geographical Operations in India, 1869-78. By C.R.
Markham and C. E. D. Black India Office, London. Publisbed annually betwean 1871 and 1879
4. A Memoir on the Indian Surveys, 1875-1890. By C. E. D.

Black India Office, London ! 591. ANNUAL REPORTS.

Reports of the Revenue Branch . . 1851 to 1877.-(1857-1870 out of print).
Ditto Topographical Branch . 1861 to 1877.-(1862-1866 and 18721875 out of print).
Ditto Trigonometrical Branch . 1861 to 1878.-(1863-1867 and 1868-1869 out of print).
In 1878 the three branches were amalganated, and from that date onwards annual reports in single volumes for the whole department, are available as follows :-

> General Reports
> \{from 1877-1900 (1877—\$0 out of print) at Rs. 3 per volume.
> \{from 1900—1915 (1902—04 and 1906-05 out of print)
> at Rs. 2 per nolume.

From 1900 onwards the Report has becn issued annually in the form of a condensed statement known as the "General Report," supplemented by fuller reports, which were called "Extracts from Narrative Reports" up to 1909, and since theu have been styled "Records of the Survey of India." These fuller reports are available as follows :-
(a) "Extracts" Volumes at Rs. 1-8 per volume.

1900-01.-Recent Improvements in Photo-Zineograply. G. T. Triangulation, Upper Burna. Intitude Operations. Experimental Base Mensurement with Jiderin Apparatus. Magnetic Survey. Tidal and Levelling. Topography in Upper Bumn. Calcutta, 1903. (Out of print.)

1901-02.-G. T. Triangulation, Upper Burma. Latitudo Opelations, Maguetic Survey. Tidal and Ievelling. Topograply in Upper Burma. Topograplyy in Siud. Topography in the Punjab. Calentta, 1904.

1902-03.-Principnl Triangulation, Upper Burma. Topograpby, Upper Burma, Topography, Slan States. Survey of the Sambbar Lake. Latitude Operations. Tidnl and Levelling. Magactic Survey. Introduction of the Contract System of Payment in Traverse Surveys. Traversing with the Subtense Bar. Compilntiou nud Reproduction of Tháde Maps. Cnlcutta, 1905.

1903-04.-Mngnetic Survey. Pcudulum. Tidal and Levelling. Astronomical Azimuths, Utilization of old Trnverse" Dnta for Modern Surveys in the United Provinces. Identification of Snow Peaks in Nepal. Topographical Surveys in Sind. Notes on Town nud Municipal Surveys. Notes on Riverain Surveys, Punjab. Calcutta, 1906.

1904-05.-Magnetic Survey. Pendulum Operations. Tidal and Levelling. Trinngulation in Baluchistān. Burvey Operatione with the Somaliland Field Forcc. Calentta, 1907.

1905-06.-Magnetic Survey. Pendulum Operations. Tidal and Levelling. Topography, Shan States. Calcutta, 1908.

1906-07.-Magnetic Survey. Pendulum Operations. Tidal and Levolling. Triangulatinn in Baluchistan. Astronomical Latitudes. Topography in Sban States. Aalenttr, 1909.

1907-08.--Magnetic Survey. Tidal and Levelling. Astronomical Latitudes. Pendulum Operatious. Topography, Shan States. Calcutta, 1910.

1908-09.-Magraetic Survoy. Tidal and Levelling. Pendulum Operations. Trinnqulation. Calcutta, J91.

ANNUAL REPORTS-(continued).
(b) "Records of the Survey of India" at Rs. 4 per volume, except where otherwise stated.

SPECIAL REPORTS.

1. *Report on the Mussoorie and Landour, Kumaun and Garhwäl, Ranikhet and Kosi Valley Surveys extended to Peshāwar and Khägān Triangulation during 1869-70. By Major T. G. Montgomerie, R.E. (Out of print.)
2. *Account of the Survey Operations in connection with the Mission to Yärkand and Kashghar in 1873.74. By Captain Henry Trotter, R.E. Calcutta, 1875.
3. Report on the Trans-Himalayan Explorations during 1869. (Out of print.)
4. Report on the Trans-Himälayan Explorations during 1870. Dehra Dūn, 1871. Price Re. 1.
(Ont of print.)
5. Report on the Trans-Himàlayan Explorations during 1878. Calcutta, 1880. (Out of print.)

- Notes of the Supvey of India " are issued monthly.

B-GEODETIC WORKS OF REFERENCE.

(Obtainable from the Superintendent of the Trigonometrical Survey, Dehra

 Dūn, D. P.)
EVEREST'S GREAT ARC BOOKS.

1. An account of the Measurement of an Arc of the Meridian between the parallels of $18^{\circ} 3^{\prime}$ and $24^{\circ} 7^{\prime}$. East India Cotmpany London, 1830. (Out of print.) 2. An account of the Measurement of two Sections of the Meridional Arc of India, bounded by the parallels of $18^{\circ} 3^{\prime} 15^{\prime \prime}-24^{\circ} 7^{\prime} 11^{\prime \prime}$-and $29^{\circ} 30^{\prime} 48^{\circ}$. East India Company . . London, 1847. (Out of print.) 3. Engravings to illustrate the above. London, 1847. (Out of print.)
G. T. S. VOLUMES—Describing the Operations of the Great Trigonometrical Survey. Price Hs. 10-8 per volume, except where otherwise stated.
Vol. 1.-Standards of Measure and Base-LInes, also an Introductory Account of the early Opcrations of the Survey, during the period of 1800.1830 Dehra Dūn, 1870. (Out of print.) II.-A History and General Description of the Reduction of the Priucipal Triangulation. Delira Dūu, 1879. (Out of print.)
III.-North-West Quadpllateral.-The Principal Triangulation, the Base-Line Figures, the Karächi Longitudinal, N. W. Himãlaya, and the Great Indus Series . . Dehra Dün, 1873. (Out of print.)
IV.-North-West Quadrlateral.-The Principal Triangulation, the Great Are-Section $24^{\circ}-30^{\circ}$, Rabũn, Gurlagarb and Jogi-Tila Meridionnl Series and the Sutlej Series - Debra Dũn, 1876.
NA.-North-West Quadrllateral,-The Principnl Triangulation, the Jodbpore and the Eastern Sind Meridional Series with the Details of their Reduction and the Final Results . Delira Dün, 1886.
V.-Pendulum Operations of Captains J. P. Basevi aud W. J. Henviside, and their Reductiou. Debra Dün and Calcutta, 1879.
VI.-Sonth-East Quadrllateral.-The Priucipal Triangulation and Simultancous Redration of the following Series:-Great Arc-Section 18° to 24°, the East Const, tho Calcutta and the Bider Longitudinal, the Jabalpur and the Rilaspur Meridiounls . . Debra Dūn, 1880. (Out of print.)
VI1.-North-East Quadrllateral-General Description und Simultancous Reduction. Also Details of the following five Serics :-North-Enst Longitudinal, the Bulhou Meridional, the Rnugir Meridionnl, the Amma Mcridional, and the Karàra Meridional Dehıa Dün, 1882.
VIIl.-North-East Qusdrllateral.-Details of the following eleven Scrics:-Gurwāni Mcridional, (Jora Meridional, Hurilinong Meridional, Cbendwār Meridioual, North Pärnanáth Meridional, North Malüncha Meridional, Calcutta Meridional, East Calcutha Longitudinal, Brahanapatra Meridional, Easterd Frontier - Section 23° to $\mathbf{2 6}^{\circ}$, and Assam Lougitudinal Debra Dūn, 1882.
G. T.S. VOLUMES-(continued).

Vol. IX.-Telegraphle Longitudes-during the years 1875-77 and 1880-81 . . . Dehre Duin, 1883.
X.-Telegraphic Longitudes-during the yeara 1881-82, 1882-89, and 1883-84 . Dehra Dúu, 1887.
XI.-Astronomical Latitudes-duriug the period 1805 to 1885 Dehra Dûn, 1890
XII.-Southern Trigon-General Description and Simaltaneous Reduction. Also details of the following two Series :-Great Arc—Section 8° to 18°, and Bombay Longitudinal . . Dehra Dün, 1890.
XIII.-Southern Trigon - Details of the following five Series :-South Konkan Coast, Mangalore Meridional, Madras Meridional and Coast, South-East Coast, and Madras Longitudinal . Dehra Dün, 1890. XIV.-South-West Quadrllateral—Details of Principal Triangulation aud Simultaneous Reduction of its component Scries

Dehra Dūn, 1890.
XV.-Telegraphic Longitudes-from 1885 to 1892 and the Revised Results of Volumes IX and X; also the Simultancous Reluction and Final Resalts of the whole Operations . Debra Dün, 1898.
XVI.-Tidal Observations-from 1873 to 1892, and the Methods of Reduction . . Dehra Dūn, 1901.

XVII-Telegraphic Longitudes-during the years 1894-95-96. The Indo-European Arcs froun Karāchi to
Greeuwich
Dehra Dün, 1901.
XVIII.-Astronomical Latitudes-(1885 to 1905) and the Deduced Values of Plumb-line Deflections.

Debra Dūn, 1906.
XIX.-Levelling of Precision In India-(1858 to 1909)

Dehra Dūn, 1910.
XIXA.-Bench-Marks on the Southern Lines of Levelling
Dehra Dün, 1910. Price Rs. 5.
XIXB.-Bench-Marks on the Northern Lines of Levelling
Debra Dün, 1910. Price Rs. 5.
SYNOPTICAL VOLUMES—Giving charts, descriptions of stations, and full synopses of coordinates and heights of all stations and points fixed by Principal and Secondary Triangulation.*

Price Rs. 2 per volume unless otherwise stated.

Italic figurer are in chronological order and refer to the Index Chart of the G. T. Survey.

North-West Quadrilateral.

Vol. I.-The Great Indus Series (32). Debra Dūn, 1874.
II.-The Great Arc-Section 24° to $30^{\circ}(6)$. Dehra Dün, 1874.
III.-The Karāchi Longitudinal Series (20̄). Dehra Dfin, 1874.
IV.-The Gurhägerh Meridional Serics (23). Dehra Dín, 1875.
V.-The Rahūn Meridional Scries (33). Dehra Dūn, 1875.
VI.-The Jogi-Tila Meridional Series (37) and the Sutlej Mcridional Series (45̃). Dehré Dün, 4875.
VII.—The N. W. Himëlaya Series (22) and the Triangulation of Kashmir (36). Debra Dūn, 1879.

VIIA.-The Jodhpore Meridional Series (62) and the Eastern Sind Meridional Series (64). Debra Dūn, 1887.
South-East Quadrlateral.
Vol. VIII.—The Great Arc-Scetion 18° to $24^{\circ}(8)$. Debra Dūu 1878.
IX.-The Jabalpur Meridional Scries (53). Dehrn Dün, 1878.
X.-The Bider Longitudinal Series (43). Dehra Dūn, 1880.
XI.-The Bilëspur Meridional Scrics (58). Dehra Dũn, 1880.
XII.-The Cnleutta Lougitudianl Scries (5). Delira Dūn, 1880.
XIII.-The Enst Coast Serics (24). Dehra Dūn, 1880.

XIIIA.-The South Pärnsnãth (1) and the South Malūncha Meridional Series (17). Debráa Dūn, 1885.

North-East Quadrilateral.

Vol. XIV.-The Budhon Meridional Series (2). Dehra Dün, 1883.
XV.-'The Rangir Meridional Series (4). Dehra Dùn, 1883.
XVI.—Tbe Amun Meridiounl Series (3) and the Knrärn Meridional Series (12). Debra Dün, 1883.
XVII.-The Gurwāni Meridional Serics (19) nad the Gora Meridional Series (15). Debra Dün, 1883.
XVIII.-The Hurilāong Meridional Scries (21) and the Chendwā Meridional Series (14). Dehra Dūn, 1883.

XlX. - Tlue North Pärasnāth (27) and the Nortb Mnlūncha Meridionol Series (13). Debrn Dūn, 1883.
XX.-The Calcuttn Meridionnl (16) and the Brahmnpūtra Meridional Series (56). Debra Dūn, 1883.
XXI. -The Enst Cnlcutta Longitudiual (48) and the Easteru Frontier Series-(23° to 26°) (44). Dehra Dūn, 1883.

XXII,-The Assam Valley Triangulation, E. of Meridian 92° (55). Debra Dūn, 1891. (Out of print.) XXXV.—'rhe Nortlı-East Longitudinal Scries (20). Debra Dün, 1909. Price Rs. 5.

Southern Trigon.

Vol, XXIII.-The South Konkan Const Serics (11). Debra Dün, 1891.
XXIV.-The Mangalore Meridiounl Scrics (49). Dehra Dün, 1891.
XXV.—The South-East Const Serice (63). Dehra Dün, 1891.

XXV1.—The lombay Longitudinnl Series (7). Delırn Dūn, 1892.
XXYII.—The Mndras Longitudimal Series (54). Dehra Γ ün, 1890.
XVVIII, -The Madras Mcridional aud Coast Scries ($\ddagger 6$). Dehra Dün, 1892.
XXIX.-The Great Arc Meridional Scries-Section 8° to 18° (9). Debra Dan, 1849.

[^8] in Indian.

SYNOPTICAL VOLUMES—(continued).

South-West Quadrilateral

Vol. XXX. -The Abu Meridional Series (96) and the Gujaratt Longitudinal Seeies (99). Debra Dün, 1892. XXXI.-The Khünpisūra Meridionnl Series (18). Deh'n Dūn, 1893.
XXXII.—The Singi Meridional Scrics (10). Dehrn Dūn, 1893.
XXXIII.-Tho Cutch Const Series (35). Dehrin Dün, 1893.

Addendun to the Cutch Const Series, (Indus delta) (separate pnmphlet). Dehra Dinn, 1902.
XXXIV.-Tho Käthiāwär Meridional Series (28). Delıra Düu, 1894.

TRIANGULATION PAMPHLETS, with charts, are now being issued for every square degree, giving the results of all minor triangulation, as well as that shown in Synoptical Volumes. Price Re. 1 per painphlet. Vide page ix.

LEVELLING PAMPHLETS-Giving heights and descriptions of all Bench-marks, fixed by levelling of Precision in India and Burma. Each pamphlet embraces an area of $4^{\circ} \times 4^{\circ}$ and the numbering is the same as that of the corresponding sheets of the $1 / \mathrm{M}$ map of India. Each is illustrated by a map of the area. Price Rs. 2 per pamphlet, except where otherwise stated.

TIDE TABLES-

Since 1591 Tidal predictions based on the observations of the Survey of India have been published annually by the India Office, London. The tables give the time and height of high and low water for every day in the year at each port, and are published early in the previous year. Current tables are available for the following 40 ports : -

Western Ports-

Suez (Egypt)-Periun-Aden-Maskat-Büshire—Kareichi-Okha Point and Bet Harbour (Gulf of Cutch)-Porbandar-Port Albert Victor (Käthiämär)-Bhannagar-Bombry (Apollo Bandar)-Bombay (Prince's Dock)Mormugao (Gon)-Karwar-Beypore (uear Calicut)-Cochin-Minicoy (Indian Ocean)—Tuticorin-Pänban Pass (Island of Rāmeswaram).

Eastern Ports --

Calle (Ceylon) -Trincomalee (Ceylon)-Colombo (Ceylon)-Negapatam-Madras-Cocnuaida-Vizagapatam-False-Point-Dublat (Sangor Island)-Diamond Harbour-Kidderpore (Calcutta)—Chittagong-Akynb-liamond Island (Burna) - Rassein-Elephant Point (Burma)-Rangoon-Amherst-Moulnein-Mergui-Port Rlair.

The Tide Tables are issued in the following forms:-

(I) Combined Volume-including all the nbove ports-Price Rs. 4.
(ii) Part I and Part II-including Western and Enstern portz reqpectively-Each part Rs. 2.
(iii) Pamphlets-giving separately the tables for individunl ports or for small locnl groups of ports-Prices varying from As. 8 to Rs. $1-8$ per pamphitet.

C-CATALOGUES AND INSTRUCTIONS.

DEPARTMENTAL ORDERS.

From 187s to 1885 the Surveyor General's orders were all issued as "Circular Orders." Since then they have been classified as follows :-

From 188j to 1904 as $\left\{\begin{array}{l}\text { 1. - Government of India Orders (called "Circular Orders " up to 1898). } \\ \text { 2.-Departmental Orders (Administrative). } \\ \text { 3.-Departmental Orders (Professional). }\end{array}\right.$

In 1904 the various orders issued since 1878 were reclassified as follows :-

Numberto date.

1.-Government of India Orders.- $\quad 664$.

 2.-Cireular Orders (Administrative).-347. S. -Clpeular Orders (Professional).- 188. 4.-Departmental Orders (nppointunents, promotions, tranafera, etc.).These are numbered serially and had reached the above numbers by December 1915. Government of India Orders and Circular Orders (Administrative) are bound up in volumes from time to time, as shown below, while Circular Orders (Professional) are gradually incorporated in the Survey Hand-books. Besides the above, temporary orders bave been issued since 1910 in the form of "Circular Memos." These either lapse or become incorporated in some more permanent form, and are therefore only numbered serially for each year. Bound volumes of orders are available as follows:-

1. Government of India Orders (Departmental) 1878-1903.-Calcutta, 1904.

2. Regulations on the subject of Language Examinations for Oficers of the Survey of Indie. Caleatta, 1914.
3. Map Publication Orders 1908-1914 (Superintendent, Map Publication's Orders).-Calentin, 1914.
4. Specimens of papers set at Examinatious for the Provincial Service.-Dehra Dūn, 1903. - Gratis.

CATALOGUES AND LISTS.

1. Catalogue of Maps published by the Survey of India. Sccond edition. Calcuttia, 1915. Price Re, 1. Note.-Lists are issued quarterly of new maps published during each quarter, nad sinilar lists fur each month appear in the monthly NOTES OF THE SURVEY OF INDIA.
2. Catalogue of Maps of the Bonbay Presideucy, Calcuttin, 1913. Price Ad. 4.
3. List of Survey of India publications (published annually) - Gratis.
4. Price List of Mathematical Instrument Office. Calcutta, 1913.
5. Catalogue of Books in the Headquarter's Library, Calcuttib, 1901. (Out of print.)
6. Catalogue of Scientific llooks and Subjects in the Library of the G. T. Office. Dehra Dūn, 1908. Price Re. 1.
7. Catalogue of Books in the Library of the Trigonometrical Survey Olfice. Dehra Dūn, 1911. Price Re. 1.
8. Green Lists-PART I.-List of Olticers in the Survey (half-yearly to dates 1st January aid 1st July) 一 Calcutta.
PART II.-History of Services of Officers of the Survey of India (annually to date 1st $J_{t l y}(y)$ Calculta.
9. Blue Lists-Ministerial and Subordiuate Establishments of the Survey of India.

PART I.-Headquarters aud Dehra Dūn Olfices (published annally to dale 1st April) Caleutta.
PaRT IL.-Circles aud parties (published annually to date 1st January)—Caleutta.

TABLES AND STAR CHARTS.

1. Auxiliary Tables-to facilitate the calculations of the Survey of India, Fourth Editiou, revised. Debra Dūn, 1906. Price Rs. 4 in cloth and calf, or Rs. 2 in paper and boards.
Tubles for Graticules of Maps. Extact; for tho use of Exploreps. Delara Dūn, 1910. Price As. 4.
*Metric Weights and Measures and other Tables. (Photo-Litho Office). Calcutta, 1889. (Out of priut.)
2. Lognrithmic Siues and Cosines to 5 places of decimals. Dehra Dūu, 1886. Prioe As. 4.
3. Logarithonic Sines, Cosines, Tangents and Cotangents to 5 places of decimals. Dehin Dūn, 1915. Price Re. 1,
4. Cominon Logarithens to 5 places of decimals.
5. Tablo for determiuing Heights in Traversing. Delra Dūn, 1898. Price As. 8 .
6. Tables of distances in Chains aud Liuks correspondiug to a sultetuse of 20 fect. Dehral Dūn, 1889. Price As. 4.
7. Ditto ditto 10 fuet. Calcutta, 1915.
8. Ditto ditto \quad feet. Ditto.
9. Star Clarts for latitude 20° N. By Colonel J. R. Hobday, I.S.C. Calcutta, 1900. Prics Rs, 1-8. (Out of print.)
10. Star Charts for latitude 30° N. By Lt.-Col. Burarl, R.E., F.R.S. Dehra Dūa, 1906. Price Re. 1.8.
11. *Catalogue of 219 Stars for cpoch Jan. 1, 1892, from observations by the Survey. Dehra Düu, 1893.
12. *Rainfall from 1868 to 1903, measured at the G. T, Survey Ollice. Dehrn Dün.

OLD MANUALS.

1. A Mnnual of Surveying for India, detailing the mode of operations on the Revenue Surveys in Bengal and the North-Westerd Provinces. Compiled by Captains R. Sinyth and H. L. Thuillier. Caleutta, 1851.
2. Ditto ditto dittg ditto. Second Edition, Loudou, 1855.
3. A Mnnunl of Surveying for India, detniling the mode of operations on the Trigonometrical, Topographical and Revenuo Surveys of India. Compiled by Colonel H. L. Thuillier, C.S.I., F.R.S., and Lieutenant-Colonal \boldsymbol{R}. Smyth. Third Edition, revised and onlarged. Calcutta, 1875. (Out of print.)
4. Hand-book, Revenue Branch. Calcutta, 1893. Price Rs. 2-8.

SURVEY OF INDIA HAND-BOOKS.

1. Hand-book of General Instructions, Fourth Edition. Calcutta, 1914. Price Rs. 3.
2. Hand-book, Trigonometrical Branch, Second Edition. Calcutta, 1902. Price Rs. 3
3. Hand-book, Topographical Branch, Third Edition. Calcutta, 1905. Price Rs. 3. (Oat of priat.)

The following chapters of a revised edition of the Topo. Hand-book are available for issue in pamphlet form :-

Chapter I.-Introductory.
" II.-Constitution and Organization of a Survey Party.
" III.-Triangulation and ita Computation.
" IV.-Traversing and its Computation.
" V.-Plane-tabling.
" VI.-Fair Mapping.
" VII.-Trans-frontier Reconnaissonce.
" IX.-Forest Surveys and Map.
" X.-Reproduction of the Sheets of the one-inch Map.
4. Photo-Litho. Offlee, Notes on Organization, Methods and Processes. Calcutta, 1914.
5. The Reproduction (for the guldance of other Departments), of Maps, Plans, Photographs, Diagrams, and Line Illustrations. Calcutta, 1914. Price Rs. 3.

NOTES AND INSTRUCTIONS.

Drawing and Paper.

1. "Notes on the Drawing of New Standard Maps. By Major W. M. Coldstream, R.E. Calcutta, 1908.
2. *Notes on Printing Papers suitable for Maps, and on Whatman Drawing Paper. By Major W. M. Coldstream, R.E. Calcutta, 1911

Printing and Field Litho. processes.
3. *Report on Rubber Offsct Printing for Maps. By Major W. M. Coldstream, R.E. Calcutta, 1911.
4. "Notes on the "Vaudyke" or Direct Zinc Printing Process, with details of Apparatus and Chemicals. required for a small section. Compiled in the Photo and Litho Office, Survey of India. Calcutta, 1913.
5. ${ }^{\bullet}$ Report on the Working of the Light Field Litho Press (Experimental) in November nad December 1910 . with Appendices. By Lieutenant A. A. Chase, R.E. Calcutta, 1911.
(1) Notes on some of the Methods of Reproduction suitable for the Field.
(2) Suggested Equipment Tables for the Light Field Litho Press (Experimental).
6. 'Report on a trial of the equipment of the lst (Prince of Wales' Own) Sappers and Miners for reproducing maps in the field, By Lieutenant A. A. Chase, R.E. Calcutta, 1912.

Base LInes and Magnetic.
7. "Notcs on the use of the Jäderin Base-line Apparatus. Debra Dün, 1904.
8. Miscellaneous Paper's relating to the Measurement of Geodetic Bases by Jäderin Invar Apparatus. Delura Dūn, 1912.
9. ${ }^{\circ}$ Instructions for taking Magnetic Observations. By J. Eccles, M.A. Dehra Dūn, 1896.
10. Rectangular Co-ordinates. O a a Simplification of the Computations relating to. By J. Kocles, M.A. Debra Dūn, 1911.
11. For Explopers. - Notes on the Use of Thermometers, Ilarometers and Hypsometers with Tables for tho Computation of Heiglts. By J. de Graaff Hunter, M.A. Dehra Dün, 1911.

D-MISCELLANEOUS PAPERS.

UNCLASSIFIED PAPERS.

Geography

1. A Sketch of the Geography and Geology of the Himälaya Mountains and Tibet. By Colonel S. G. Burrard, R.E., F.R.S., Supdt., Trigonometrical Surveys, and Mr. H. H. Hayden, B.A., F.G.S., Supdt., Geological Survey of India. Calcutta, 1907-08.

Part I.-The High Peaks of Asia.
" II.-The Principal Mountain Ranges of Asia.
" ILI. - The Rivers of the Himàlaya and Tibet.
, IV.—The Geology of the Himälayn.
2. *Report on the Identification and Nomenclature of the Himälnyan Peaks na seen from Kätināudu, Nejril. Calcutta, 1904.
3. Routes in the Western Himälnya, Kashmir, etc. By Lieut.Colonel T. G. Montgomerie, R.E., F. A.s., F.R.G.S. Third Editiou. Reviand and corrected. Dehra Dūn, 1909. (Out of print.)

Spectal Reports.

4. Report on the Recent Determination of the Longitude of Madras. Calcutta, 1897.
5. "Report on the Observation of the Total Solar Eclipse of 6th April 1875 at Camorta, Nicobar Islauds. Dy. Colonel J. Waterhouse. Calcuth, 1875. (Out of print.)
i. "Thu Total Solar Eelipae, January 22, 1898. Dehra Dūn, 1898.
(1) Report on the observations at Dumraon.
(2) Report on the obserrations at Pulgaon.
(3) Repuort on the observations at Sahdol.

UNCLASSIFIED PAPERS-(continued).

Special Reports - (continued).
7. *Report on Local Attraction in India, 1893-94. By Captain S. G. Burrard, R.E. Calcutta, 1895. (Out of print.)
8. *Report on the Trigonometrical Results of the Earthquako in Assam. By Captain Berrard. Calcatta, 1808. (Out of print.)
9. *Notes on the 'Topographical Survey of the $\frac{1}{80,000}$ Sheets of Algerin by the Topographical Section of the "Servico Geographique de l'Armée." By Captain W. M. Coldstream, R.E. Calcutta, 1006.
10. *The Sinnla Estates Boundary Survey on the scale of 50 fect to 1 inch. By Captain E. A. Tandy, R.E. Calcutta, 1906.

Geodesy.

11. Notes on the Theory of Errors of Observation. By J. Eccles, M.A. Dehra Dūd, 1903 Price 48.8
12. *Note on a Change of tho Ases of the Terrestrial Spheroid in relation to the Triangulation of the G. T. Survey of India. By J. de Graaff Hunter, M.A. Debri Dūn. (Out of print.) (Incorporated in Pro• fessional Paper No. 16.)

Projections.

13. On the projection used for the Gencral Maps of Indin. Delra Dün, 1903.
14. *Ou the deformation resulting from the method of constructing the Interuational Atlas of the World on the scale of one to one million. By Ch. Lallemand. Translated by J. Eceles, M.A., together with tables for the projection of 1/M Maps on the Iuterwational system. Dehra Dūn, 1912.

Mapping.

15. * Λ Note on the different methods by which hills can be represented upon maps. By Colone! $S . G$. Burard, C.S.I., R.E., F.R.S., Surveyor General of India. Simla, 1912.
16. *A Note on the representation of bills. By Major C. L. Robertson, C.M.G., R.E. Debra Dūa, 1912.
17. "A Note ou the representation of hills on the Maps of Iudin. By Major F. W. Pirrie, I.A. Dehre Dûn, 1912.
18. *A consideration of the Coutour Intervals and Colour Scales best suited to Indian 1/M maps. By Captain M. O'C. Tundy, R.E. Calcutta, 1913.

PROFESSIONAL PAPERS-Price Rupee 1 per volume, except where otherwise stated.

No. 1.-Projection.-On the Projection for a Map of India and adjacent Countrics on the scalo of 1: 10,00,000. By Colonel St. G. C. Gore, R.E. Second Edition, Dehra Dūu, 1903.
No. 2.-Base Lines.-Method of mensuring Geodetic lascs by means of Mctallic Wires. By M. Jäderin. (Translated from Mémoires Présentés par Divers Savants à l'Académie des Sciences de l'Iustitut de France). Dehra Dūu, 1899. (Out of print.)
No. 3.-Base Lines.-Method of measuring Geodetic Bases by means of Colby's Compeusated Bars. Compiled by Lieutenant $\boldsymbol{H} . M_{c} C$. Cowie, R.E. Dehra Dūu, 1900. (Out of print.)
No. 4.-Splrit-levels.-Notes on the Calibratiou of Levels. By Lieulenant E. A. Tandy, R.ET. Dehra Dūn, 1900. (Out of print.)
No. 5.-Geodesy.-The Attraction of the Himanaya Mountains upon the Plumb-Line iu India. Considerations of recent data. By Major S. G. Burrard, R.E. Sccond Edition. Debra Dūu, 1901. Price Rs. D.
No. 6. - Base Lines.-Account of a Determination of the Co-cficients of Expansion of the Wires of the Jäderiu lase-Lino Apparatus. By Captain G. P. Lenox-Conyngham, R.E. Dehra Dün, 1902.
No, 7.-Miscellaneous. Calcutta, 1903.
(1) On the values of Longitude employed in maps of the Survey of India.
(2) Levelling across the Ganges at Dämukdin.
(3) Experimont to test the increase in the length of a Levelliug Staff due to moisturo aud temperature.
(d) Description of a Sun-dinl desigued for use with tide gauges. *
(5) Nickel-steel alloys and their application to Geodesy. (Translated from the Freuch.)
(6) Theory of electric projectors. (Translated from the Frencl.)

No. 8.-Magnetic. - Experiments made to determine the Temperature Co-efficieuts of Watsou's Maguetographs. By Captain H. A. Donholm Fraser, R.E. Calcutta, 1905.
No. 9.-Geodesy.-An Account of the Scientific work of the Survey of India aud n Comparisou of its progress with that of l'oreign Surveys. Prepared for tho use of the Survey Committee, 1905. By Lieutenant-Colonel S. G. Burrard, R.E., F.R.S. Calcutta, 1905.
No. 10.-Pendulums.-Tho Peudulum Operations in Indin, 1903 to 1907. By Major G. P. LenorConynghàn, R.E. Dehra Dūn, 1908. Price Rs. 2.9.
No. 11.-Refraction.-Observations of Atmospheric Refraction, 1905.09. By F. G. Shaw, Surney of India. Dehra Dūn, 1911.
No. 12.-Geodesy.-On the Origin of the Himälnya Mountains. By Colonel S. G. Burrard, C.S.I., R.E., F.R.S. Calcutth, 1912.

No. 13.-Isostasy.-Investigation of the Theory of Isostasy in Iudia. By Major H. L. Crosthwait, R.E. Dohra Dūn, 1912.
No. 14.-Refraction.-Formulm for Atmospheric Refraction and their npplication to Terrostrial Refraction and deodeny. By J. de Graaff Huntor, M.A. Delnti Dūn, 1913. Price Re, D.
No. 15.-Pendulums.-Tho Pouduhm Operations in ladia and Burna, 190s-13. By Caplain K. J. Couchnan, R.E. (at press).
No. 16.-Geodesy.-The Earth's Lxes nud Triangulation. By J. de Graaff Hunter, M.A. (at press).

DEPARTMENTAL PAPERS SERIES. (F'or departmental use only.)

No. 1.-Type. - A consideration of the wost suitable forms of type for use on maps. By Caplain M. O'C. Tandy, R'E. Dehra Dūu, 1913.
No. 2.-Symbols. - A review of the Boundary Symbols used on the maps of various countrics. By Capiain M. O'C. Tandy, R.E. Delra Dūn, 1913.

No. 3.-Maps.-Extract from "The New Map of Italy, Scale 1: 100,000." By Luigi Gianuitrapani. Traaslated from the Italian by Major W. M. Coldstream, R.E. Delara Dün, 1913.
No. 4.-Town Supveys.-A report on the practice of Town Surveys in the United Kinglom and its :pplication to India. By Major C. L. Rohertson, C.M.G., R.E. Dehra Dūn, 1913.
No. 5.-Stereo-plotter-The Ihompson Stereo-plotter and its use, with notes on the licld work. By Lieulenant K. Mason, R.E. Debra Dūn, 1913.
No. G.-Levelling.-Levelling of High Precision. By Ch. Lallomand. Translated from the Frcneh by J. de Graaff Hunter, M, A. Dehra Dūw, 1914.

No. 7.-Standard Bars. War Comparisous of 1907 and 1908. By Major H. McC. Cowie, R.ES. Dehra 1)ü, 1915.

No. 8.-Helio-zincography.-Report on Rubber Off-set Flat-bed Machine Printing. By Captain S. W. Sackville Hamilton, R.E. Calcutta, 1915.

PROFESSIONAL FORMS.

A large number of forms for the record and reiluction of Survey Operations are stocked at Dehra. A list of these can be obtained from the Superintendent of the Trigononetrical Survey, Dehra Dūn, U. P.

PUBLICATIONS OF THE ROYAL SOCIETY.

(Ollainable from Messrs. Dulau \& Co., 37, Soho Square, London, W., or Messrs. Harrison \& Sons, St. Murtin's Laue, London, or the Royal Sociely ut Burlinglon Ilouse, London.)

1. Philosophien Transactions, Series A, Volume 186, 1895. Iudia's Coutribution to Geollesy, by Goneral J. T. Falke), R.E., C.B., F.R.S., LL.D.
2. Pliolosophical Trananctions, Series A, Volume 205, pages 289-318, 1905. On tho Intcusity and Direction of the Forec of Gravity in India, by Lieutenant-Colonel S. G. Burrard, R.E., F.R.S.
3. Procecelings, Scries A, Volune 90 , page; $32-40$, 1914. On the offect of the Gnagetic Alluvium on the Plumbl). Line in Northorn India, by R. D. Oldham, F.R.S.
4. Froceedinge, Series Δ, Volune 91, pages 220-238, 1915. Onithe origin of the Indo-Gangetic trough, commouly called the Himalayan Foredeep.

agEnts for the sale of indian official publications.

LONIDON.
A. Constable \& Co., 10, Orange Street, Leicester Square, W.C.
P. S. King \& Son, 2 arid 4, Great Smith Strect, Westminster, S.W.
Kbgay Padl, Trenct, Trüdnem \& Co., 68, Carter Lauc, E.C.
13. Quanitci, 11, (irafton Street, New Boud Strect, W.

Hentis. Kina \& Co., 65, Combill, R.C.
Grindlay \& Co., \ddagger, Parlianent Street, S.W.
T. Figier Untin, Ltd., 1, Adelphi Terrace, W.C.
W. 'Thackba \& Co., 2, Ceced Lane, Lurgate Hill, L.C.

Lozac\& Co., 46, Great Ruseell Strect, W.C.
Edmard Stanford, Ltd. (for maps only), 12-1.1, Long Acre, W.C.

EDINDURGII.
Ulifer and boyd, Tweeddale Court.
DUBLiLN.
E. fonsonby, Ltd, 1lG, Grafton sticet.

OXFORD.
B. H, Blagemble, 50 and 51, broad strect.

CAMBRIDGE.
Deialton, bell \& Co., Ltd., Trinily Sureet.
ON THE CONTINEN'S.
Eirnast Lehode, line lionaparte, Paris
... Praner.
Martines Nijhorf, The Hegue
... Holland,

indita.

Thacker, Spink\& Co., Nus. 5 and 6, Govermment Place, North, Calcutta bud Simla.
Newman \& Co., No. f, Dalhonsic Syuare, Calenth,
Tlug secretatif, Indiay school supply Drfót, No. 309, kow bazar Street, Calcutia, nued bacca.
liai sahid M. Guiat Sinaif \& Sons, No. 76, Lower Cirenhar Road, Calentta, and Lehore.
Thaceen \& Co., Litd., Bombay.
D. B. Tamaporevala, Sons \& Co., Mombay.

Higginbotham \& Co., Mudins.
froprietole, Mapasilitis Printino Worḱs, Minsooric.
Subbrintenideyt, ambeioan baftist Mission Pebss,
70, Merchant Strect, Rangoon.
Cocignom's agenoy, Sringerar.
Bobman \& Co., Muzaffupur.

[^0]: - Obervationa taken with a umall riveragage by the Port Officer for part of the gear.

[^1]: Temporary linc Form Numbers. Not publialisd
 depande on the belght of the atone prism at the Post Office. Check-levelling was ran from this mark tothe benoli- anarke at Goneral Alexnder's monument and at the bridge over the Birun river. Tho diserepancles belog - 0 '11.4 and -0.02l of afiot, respetively

[^2]: *The committee's report π rill be found in Pat III of the Records for 1913-14.

[^3]: Norr. - When the sign is + the magnet po:ints to the East, and when - to tiue West of the mean position

[^4]: *The maps and charts referred to in the address were in the form of lantern-slides and have not been reproduced in this report.

[^5]: - The idea of flotation bas anisen because the question of mountain-eupport has been given precedence of the question of mountain-clevation. Questions of support nad maintenance alould be subsidiary to questions of formation and origin. If mountains are due to the rertical espansion of rock, a theory of flotation is saperfluous.

[^6]: - Milne', Catalogue of Destructive Eartliqnakes.

[^7]: * See "Sketch of the Geography and Geology of the Himālaya Mountains and Tibet," paze 160. See also "Records of the Survey of India, Vol. IV," page 3, "Note on the discovery of the peals of Nameha Barwa."

[^8]: - Apectel charte can be eupplled of those earien for which no Syuoptical Volamea sro apallable, riz. :-all Barma, Chittagoug and Daluchletan trlangalation, the Absam Longitadinal, the Bambalpur Meridlonal, and the Gilgit Serien, withafem reoent Secondary Serles

